Добавить в цитаты Настройки чтения

Страница 7 из 17

Десятки лет физики безуспешно искали вещества, которые обладали бы сверхпроводимостью при комнатной температуре. Это был утомительный скучный процесс — искали методом проб и ошибок, испытывая один материал за другим. Но в 1986 г. был открыт новый класс веществ, получивших название «высокотемпературные сверхпроводники»; эти вещества обретали сверхпроводимость при температурах порядка 90° выше абсолютного нуля, или 90 К. Это открытие стало настоящей сенсацией в мире физики. Казалось, распахнулись ворота шлюза. Месяц за месяцем физики соревновались друг с другом, стремясь установить новый мировой рекорд сверхпроводимости. Какое-то время даже казалось, что сверхпроводимость при комнатной температуре вот-вот сойдет со страниц научно-фантастических романов и станет реальностью. Но после нескольких лет бурного развития исследования в области высокотемпературных сверхпроводников начали замедляться.

В настоящее время мировой рекорд для высокотемпературных сверхпроводников принадлежит веществу, представляющему собой сложный оксид меди, кальция, бария, таллия и ртути, которое становится сверхпроводящим при 138 К (-135 °С). Эта относительно высокая температура все еще очень далека от комнатной. Но и это—важный рубеж. Азот становится жидким при температуре 77 К, а жидкий азот стоит примерно столько же, сколько обычное молоко. Поэтому для охлаждения высокотемпературных сверхпроводников можно использовать обычный жидкий азот, это недорого. (Разумеется, сверхпроводники, остающиеся таковыми и при комнатной температуре, совсем не потребуют охлаждения.)

Неприятно другое. В настоящее время не существует теории, которая объясняла бы свойства высокотемпературных сверхпроводников. Более того, предприимчивого физика, который сумеет объяснить, как они работают, ждет Нобелевская премия. (В известных высокотемпературных сверхпроводниках атомы организованы в четко выраженные слои. Многие физики предполагают, что именно слоистость керамического материала дает возможность электронам свободно передвигаться внутри каждого слоя, создавая таким образом сверхпроводимость. Но как именно и почему это происходит — по-прежнему загадка.)

Недостаток знаний вынуждает физиков искать новые высокотемпературные сверхпроводники по старинке, методом проб и ошибок. Это означает, что пресловутая сверхпроводимость при комнатной температуре может быть открыта когда угодно—завтра, через год, или вообще никогда. Никто не знает, когда будет найдено вещество с такими свойствами и будет ли оно найдено вообще.

Но если сверхпроводники при комнатной температуре будут открыты, их открытие, скорее всего, породит громадную волну новых изобретений и коммерческих приложений. Обычными, возможно, станут магнитные поля, в миллион раз более сильные, чем магнитное поле Земли (которое составляет 0,5 Гс).

Одно из свойств, присущих всем сверхпроводникам, носит название эффекта Мейснера. Если поместить магнит над сверхпроводником, магнит зависнет в воздухе, как будто поддерживаемый некой невидимой силой. [Причина эффекта Мейснера заключается в том, что магнит обладает свойством создавать внутри сверхпроводника собственное «зеркальное отражение», так что настоящий магнит и его отражение начинают отталкиваться друг от друга. Еще одно наглядное объяснение этого эффекта — в том, что сверхпроводник непроницаем для магнитного поля. Он как бы выталкивает магнитное поле. Поэтому, если поместить магнит над сверхпроводником, силовые линии магнита при контакте со сверхпроводником исказятся. Эти силовые линии и будут выталкивать магнит вверх, заставляя его левитировать.)

Если человечество получит возможность использовать эффект Мейснера, то можно вообразить шоссе будущего с покрытием из такой специальной керамики. Тогда при помощи магнитов, размещенных у нас на поясе или на днище автомобиля, мы сможем волшебным образом парить над дорогой и нестись к месту назначения без всякого трения или потерь энергии.

Эффект Мейснера работает только с магнитными материалами, такими как металлы, Но можно использовать сверхпроводниковые магниты и для левитирования немагнитных материалов, известных как парамагнетики или диамагнетики. Эти вещества сами по себе не обладают магнитными свойствами; они обретают их только в присутствии и под воздействием внешнего магнитного поля. Парамагнетики притягиваются внешним магнитом, диамагнетики отталкиваются.

Вода, к примеру, диамагнетик. Поскольку все живые существа состоят из воды, они тоже могут левитировать в присутствии мощного магнитного поля. В поле с магнитной индукцией около 15 Т (в 30 000 раз более мощном, чем магнитное поле Земли) ученым уже удалось заставить левитировать небольших животных, таких как лягушки. Но если сверхпроводимость при комнатной температуре станет реальностью, можно будет поднимать в воздух и крупные немагнитные объекты, пользуясь их диамагнитными свойствами.

В заключение отметим, что силовые поля в том виде, в каком их обычно описывает фантастическая литература, не согласуются с описанием четырех фундаментальных взаимодействий в нашей Вселенной. Но можно предположить, что человеку удастся имитировать многие свойства этих выдуманных полей при помощи многослойных щитов, включающих в себя плазменные окна, лазерные завесы, углеродные нанотрубки и вещества с переменной прозрачностью. Но реально такой щит может быть разработан лишь через несколько десятилетий, а то и через столетие. И в случае, если сверхпроводимость при комнатной температуре будет обнаружена, у человечества появится возможность использовать мощные магнитные поля; возможно, с их помощью удастся поднять в воздух автомобили и поезда, как мы видим в фантастических фильмах.





Принимая все это во внимание, я бы отнес силовые поля к I классу невозможности, т. е. определил их как нечто невозможное для сегодняшних технологий, но реализуемое в модифицированной форме в течение ближайшего столетия или около того.

2. Невидимость

Нельзя полагаться на глаза, если расфокусировано воображение.

Марк Твен

В сериале «Звездный путь IV: Путешествие домой» экипаж «Энтерпрайза» захватывает боевой крейсер клингонов. В отличие от кораблей Звездного флота Федерации, корабли Клингонской империи оборудованы секретным «маскирующим устройством», способным сделать их невидимыми для глаза и радара. Это устройство позволяет клингонским кораблям заходить незамеченными в хвост кораблям Федерации и безнаказанно наносить первый удар. Благодаря маскирующему устройству Клингонская империя имеет перед Федерацией планет стратегическое преимущество.

Возможно ли на самом деле такое устройство? Невидимость давно стала одним из привычных чудес научно-фантастических и фэнтезийных произведений — от «Человека-невидимки» до волшебного плаща-невидимки Гарри Поттера или кольца из «Властелина колец». Тем не менее на протяжении по крайней мере ста лет физики дружно отрицали возможность создания плащей-невидимок и однозначно заявляли, что это невозможно: плащи-де нарушают законы оптики и не согласуются ни с одним из известных свойств вещества.

Но сегодня невозможное может стать возможным. Достижения в области «метаматериалов» заставляют в значительной мере пересмотреть учебники оптики. Созданные в лаборатории рабочие образцы таких материалов вызывают живой интерес средств массовой информации, производственников и военных; всем интересно, как видимое сделать невидимым.

Невидимость, возможно, одна из самых старых концепций древней мифологии. С начала времен человек, оставшись один в пугающей тишине ночи, чувствовал присутствие невидимых существ и боялся их. Повсюду вокруг него во тьме таились духи мертвых — души тех, кто ушел до него. Греческий герой Персей, вооружившись шлемом-невидимкой, сумел убить злобную горгону Медузу. Генералы всех времен мечтали о маскирующем устройстве, которое позволило бы стать невидимым для врага. Пользуясь невидимостью, можно было бы легко проникнуть за линию обороны противника и застать его врасплох. Преступники могли бы использовать невидимость для совершения дерзких ограблений.