Страница 150 из 169
Следовало принять априори, что позитивный электрон должен был бы быть двойником отрицательного электрона и иметь ту же самую малую массу. Не было, однако, ни малейших намеков на существование такого двойника.
Но поскольку можно было возразить, что носитель положительного электричества с массой гораздо меньшей, чем у ядра водорода, быть может, будет еще открыт, казалось нежелательным ставить под сомнение эту возможность присвоением имени позитивного электрона водородному ядру.
Ну, а так как крестным отцом протона, обсуждавшим эту дилемму, был он сам, Резерфорд, то однозначно ясно, что видение позитрона посещало его задолго до теоретического предсказания Дирака. И настолько реальным было это видение, что вот ведь даже имя было зарезервировано для него в ожидании дня, когда оно явится во плоти.
Поэтому легко представить, что остаться равнодушным к «игре в символы» на этот раз сэру Эрнсту было много труднее, чем когда-либо прежде. Воображению рисуется вспышка его бурного одобрения. И воображать эту вспышку тем интересней, что о Дираке известно: он сам пребывал в сильнейшем смущении оттого, что, безусловно доверяя своей логике, должен был утверждать возможное существование не только антиэлектронов, но и антипротонов, антиатомов, а там и антимиров…
Резерфорд мог шумно радоваться, что его вещное чувство реальности теперь вправе было опереться на бесплотный минус в формуле смятенного теоретика. (Вот только радовался ли он этому в действительности, к сожалению, неизвестно.)
В том же 28-м году случилось в Кавендише еще и другое событие, уже наверняка понудившее Резерфорда оставить, наконец, позицию над схваткой.
Квантовая механика прорыла туннель к атомному ядру.
Однажды — было это на первом году его президентства в Королевском обществе — он написал старому манчестерцу Дьердю Хевеши:
Чадвик и я работаем иад рассеянием альфа-частиц и надеемся вскоре опубликовать интересные результаты. Я хочу узнать об атомном ядре немножко больше, прежде чем совсем отойду от настоящей работы.
Была в этих словах его всегдашняя ненасытимая жадность, но прослушивалось и что-то новое: пожалуй, отголосок глубоко запрятанной усталости. Или смиренного понимания, что ему уже не открыть и не постигнуть всего, что хотелось бы. Сначала уходит время посева, потом уходит время жатвы. Не в том только дело, что с годами все больше сил и сосредоточенности будет отнимать у него «ненастоящая работа», а в том еще — и не это ли главное? — что сами наши силы и наша сосредоточенность суть убывающие функции времени. Словом, это звучало грустно: «Я хочу узнать немножко больше, прежде чем…»
Вся надежда его была по-прежнему на рассеяние альфа-частиц: от картин рассеяния ожидал он желанной информации об устройстве ядер. Создание более мощной атомной артиллерии еще продолжало оставаться делом неясного будущего. Новое пока врывалось лишь в методы регистрации альфа-снарядов и осколков разбитых ядер.
Методу сцинцилляций, как заслуженному ветерану, уже готовилась почетная отставка. И была ирония истории в том, что только иод конец своей блистательной карьеры он, этот метод, удостоился и сам пристального изучения. В самом деле, ведь никто еще не выяснял причин его эффективности! Никто не мог бы точно сказать, а что, собственно, светится на экране из сернистого цинка? Какая доля энергии альфа-частицы превращается в энергию этого свечения? И какова чувствительность глаза при общепринятых условиях счета? Сколько квантов он видит?
С благословения Резерфорда ответы на эти вопросы искал молодой его рисёрч-стьюдент из Ленинграда Юлий Харитон, работавший в Кавендише как раз в ту пору — с осени 26-го по осень 28-го года. В содружестве с молодым канадцем Ли и с помощью препаратов Кроу эти ответы Харитон получил. Выяснилось, между прочим, что каждая сцинцилляция — акт свечения не отдельного атома, как думал некогда Резерфорд, а целого кристалла. И было доказано, что нижний порог чувствительности глаза — 30 квантов зеленого света, а после хорошей тренировки — 20…
Эта работа дала Харитону — впоследствии выдающемуся атомнику — неоценимый опыт тонкого экспериментирования, снискала ему живейшую симпатию Резерфорда и принесла звание доктора философии Кембриджского университета. Но дни сцинцилляционного метода были уже сочтены. Как рассказывает Коккрофт, в разных отдаленных углах и подвалах лаборатории кавендишевец Винн-Вильямс и его помощники уже собирали в то время первые усилительные схемы автоматического счета заряженных частиц. На ядерную физику начинала работать электроника тех лет. Харитон и Ли как бы написали впрок прекрасную эпитафию эпохе, когда безденежные кавендишевцы, натренировав свои глаза на 20 квантов, могли уверенно рассчитывать на приработок у Чадвика.
Однако от этого не становились менее обнадеживающими попытки узнать об атомном ядре «немножко больше» именно по картинам рассеяния альфа-частиц. Напротив, теперь эти картины обещали давать более точную информацию.
Беда была в другом: накапливались факты, но не росло понимание. И это-то заставило Резерфорда написать грустную фразу в письме к Хевеши.
…Не второстепенности ускользали от понимания, а самое главное. «Большие трудности возникают в тот момент, когда мы задаемся вопросом, почему ядро атома держится как нечто целое…» — говорил Резерфорд в одной из лекций 27-го года. И пояснял, что силы взаимного отталкиванья одинаково заряженных частиц, огромные на ничтожных внутриядерных расстояниях, должны были бы по закону Кулона разрывать ядро на куски.
Надо было допустить, что в ядрах действуют по своим законам какие-то еще силы неэлектрического характера — мощные силы притяжения. Стоя непреодолимым потенциальным барьером на страже цельности атомных ядер, они не дают им рассыпаться на составные части. Опыты по рассеянию альфа-частиц показывали, где проходит этот барьер, и позволяли вычислить его высоту.
Для ядра урана она оказывалась не ниже 10 миллионов электрон-вольт. Отсюда следовал немедленный вывод, что излучаемые ураном альфа-частицы должны обладать не меньшей энергией движения: в противном случае, по классическим законам механики, как смогли бы они преодолеть барьер уранового ядра? А между тем…
А между тем давно было известно, проверено и перепроверено, что энергия альфа-частиц урана — всего 6 миллионов электрон-вольт. И стало быть, по законам классики, они никогда не могли бы вырваться из своего ядерного плена. Так было и с другими альфа-излучающими атомами.
Альфа-распад становился явлением загадочным. Классика его запрещала. А природа разрешала!
Между прочим, по словам Бора, одним из первых обратил внимание на странность происходящего молодой Роберт Оппенгеймер. Было это как раз в 27-м году, когда он перед поездкой в Геттинген для работы у Макса Борна некоторое время провел в Кавендишевской лаборатории. Там, в кабинете Резерфорда, Бор и познакомился с ним. Со временем они стали друзьями, хотя датчанин годился в отцы американцу. И через три десятилетия, в 50-х годах, когда маккартистская Америка травила Роберта Оппенгеймера как противника водородной бомбы, Бор со всегдашней своей высочайшей порядочностью намеренно и подчеркнуто заявил о близкой дружбе, связывающей его с Оппи. Он сделал это в мемориальной резерфордовской лекции. И там же рассказал, с какою безошибочностью в 1927 году Резерфорд восторженно отозвался о богатой одаренности двадцатитрехлетнего физика из Штатов.
Можно поручиться, что сэр Эрнст оттого-то и отнесся тогда с повышенным интересом к Оппенгеймеру, что тот задумался над противоречивым фактом проникновения недостаточно энергичных частиц через высокие потенциальные барьеры. Это противоречие все более и более томило тогда самого Резерфорда.
Сознавая безысходность положения, он недаром требовал новых законов: чутье подсказывало ему, что старыми тут не обойдешься. Но вместе с тем он еще пытался выйти из затруднений миролюбиво — с помощью одних классических представлений. В сентябре 27-го года он даже опубликовал в «Philosophical magazine» чисто теоретическую статью «Структура радиоактивных атомов и происхождение альфа-лучей», в которой, по его же собственным словам, выразилось «стремление примирить явно противоречащие друг другу данные…».