Страница 124 из 169
Как сказал Эйнштейн в одном письме: «Если не грешить против разума, вообще ни к чему нельзя прийти». Они вернулись к тому, на чем остановились.
9 ноября 1917 года — ровно через два месяца после начала работы — бронзовую камеру снова наполнил воздух. Сухой и чистый. С удвоенной бдительностью были подсчитаны сцинцилляции. А на следующий день воздух был заменен азотом — тоже очищенным. И с той же бдительностью снова были подсчитаны длиннопробежные частицы.
Как и ожидал Резерфорд, с чистым азотом эффект увеличился примерно на 25 процентов: как раз настолько, насколько в чистом азоте больше атомов азота, чем в воздухе. Виновник происходящего вновь с очевидностью подтвердил свою вину.
Но что же происходило с азотной мишенью под альфа-обстрелом, если в итоге камеру покидали какие-то далеко летящие частицы?
В тот день, 9 ноября, когда Резерфорд окончательно уверился, что источник загадочных сцинцилляций — некое альфаазотное взаимодействие, он записал в своем лабораторном дневнике:
Установить, вызываются ли эти сцинцилляций N, Не, Н или Li?
В лаконичном перечислении вслед за азотом трех легчайших атомов — гелия, водорода, лития и содержался ответ на вопрос, какие события могут иметь место в камере при альфабомбардировке азотной мишени. Что с того, что ответ был дан в форме нового вопроса. В сущности, в науке все ответы — это новые вопросы, требующие ответа. Замечание двухмесячной давности «не может быть С (углерод)» было сделано в утвердительной форме, но разве оно выиграло от этого? Сразу видно, как далеко продвинулась мысль Резерфорда от того сентябрьского рубежа…
Его мысленному взору открылась уже вполне предметная картина атомных превращений. Она, эта невидимая и невиданная картина искусственной трансмутации стабильного элемента, отчетливо представилась ему, как рождение в процессе альфа-азотного взаимодействия хорошо известных легких атомов, которых, однако, ни один химик никогда из азота не получал.
Пока речь шла только об атомах меньших, чем атом азотный (чья масса 14 и заряд ядра +7). Пока Резерфорд рассуждал лишь по принципу: обломки меньше целого. О более сложных ядерных реакциях ои тогда не думал. И понятно, что он рассчитывал зарегистрировать с помощью сцинцилляций прежде всего наиболее подвижные обломки — «меньшие половинки» раскалывающихся атомов азота. Именно они могли оказаться длиннопробежными частицами, мучившими его воображение.
Столь малых атомов тогда известно было три: водород с массой 1 (заряд ядра +1), гелий с массой 4 (заряд +2), литий с массой 7 (заряд +3). Эти-то три варианта и перечислил Резерфорд, делая свою памятную запись 9 ноября.
А позднее ему пришел в голову еще и четвертый вариант, по тем временам подчеркнуто необычайный. Он подумал: не видно причин, почему бы в ходе трансмутации не могли рождаться легкие атомы с еще неведомыми комбинациями массы и заряда. Сегодня мы сказали бы — «новые изотопы». Но тогда этот термин звучал еще непривычно. Резерфорд не воспользовался им, записывая в дневнике свою отважную мысль:
А не предположить ли, что длиннопробежные сцинцилляции в молекулярном азоте возникают благодаря появлению атома с зарядом e=+1 и массой m=2 (назовем его X)?
Так, попутно, он предсказал существование тяжелого водорода, открытого лишь полтора десятилетия спустя. Но, пожалуй, еще знаменательней, что он, таким образом, попутно провозгласил принципиальную возможность создания в лаборатории новых элементов. Этакой программой не смели задаваться даже безрассуднейшие из былых алхимиков!
А какое головокружение вызвала бы у них перспектива добывать из воздуха металл подороже золота? Между тем именно эта сверхалхимическая перспектива заключалась в третьем из четырех резерфордовских вариантов превращения азота: Li (литий) в 10-х годах продавался по более высокой цене, чем золото наивысшей пробы.
В этой попутной полушутке, кроме достоверного указания на тогдашнюю дороговизну лития, есть и другая правда: в тот последний год войны, в Манчестере, на втором этаже обезлюдевшей и давно притихшей лаборатории действительно приоткрылось головокружительное будущее ядерной физики. Бор сказал, что тогда-то и родилось то дитя, которое Резерфорд позже любил называть «современной алхимией».
Бор был, кажется, первым, кому Резерфорд поспешил сообщить, что дитя ожидается. В декабре 17-го года в Копенгаген пришло письмо из Манчестера:
…Время от времени я выискиваю лишние полдня, чтобы заняться кой-какими из моих собственных экспериментов, и полагаю, что получил результаты, которые в конечном счете окажутся чрезвычайно важными. Я так хотел бы потолковать здесь об этих вещах с вами. Мне приходится детектировать и подсчитывать легкие атомы, приводимые в движение альфа-частицами, и я думаю, что эти данные бросают яркий свет на характер и распределение сил поблизости от ядра. Этим же методом я пытаюсь также раздробить атом. В одном случае результаты выглядят многообещающими, но потребуется уйма труда, чтобы увериться в них. Кэй помогает мне, и он стал теперь экспертом счета сцинцилляций…
Раздробить атом!
Если похоже на правду, что еще в сентябре Резерфорд почувствовал, как приближается пора великих дел, то вот она и наступила.
Однако здесь об этом почти нечего рассказать.
Великие дела надолго обернулись изнурительными сеансами тихой работы, поровну поделенной между шефом и ассистентом.
Для этих экспериментов надобны два работника: один — чтобы перемещать источник радиации и регулировать действие опытной установки, второй — чтобы считать сцинцилляций. Перед началом счета наблюдатель должен предоставить своим глазам получасовой отдых в темном помещении, а пока длится работа, не должен подвергать их никакому световому воздействию, разве что очень слабому. Опыты проводились в большой затемненной комнате с маленькой темной каморкой, в которую наблюдатель скрывался, когда возникала необходимость включить свет для наладки экспериментального устройства. Было найдено практически, что всего удобней вести счет в течение одной минуты, а потом в течение такого же интервала времени отдыхать… Как правило, через час зрение переутомляется и результаты становятся ошибочными или недостоверными. Крайне нежелательно заниматься счетом сцинцилляций больше часа подряд, и предпочтительно делать это лишь несколько раз в неделю.
При благоприятных обстоятельствах такие эксперименты оказываются довольно надежными и тогда, когда их проводят изо дня в день. Данные, которые получал мой ассистент м-р В. Кэй, и те, что получал я сам, всегда находились в отличном согласии при самых различных условиях.
Вот и все великие дела. От 15 отсчетов в минуту до 40 отсчетов в минуту… Не больше сорока — иначе начнутся ошибки… Изо дня в день… При самых различных условиях… И уже не сослаться ни на нервы, ни на очки, ибо «для этих экспериментов надобны два работника».
И как десять лет назад:
— Дэдди, а что вы там все время считаете с Биллом Кэем?
— Светлячков, Эйлин, все тех же светлячков!
— А зачем?
Впрочем, Эйлин было уже семнадцать. И уже не так простодушно, как прежде, выражала она теперь свое наследственное, резерфордовское любопытство. Но и для него всеобщевсегдашнее «а зачем?» едва ли звучало теперь только наивно или только досаждающе. Мир за стенами лаборатории не давал забыть о себе.
Война продолжалась. Четвертый год. И жизнь полна была неиссякающих страхов и несбывающихся надежд. И еще меньше, чем когда бы то ни было прежде, мог выручить человечество какой-нибудь милосердный румфордов суп. Но еще в миллион раз меньше нужна была людям, более смертным, чем когда-либо, праздная трансмутация какого-то там азота.
Быть может, всего нужнее было то, что происходило тогда в России? Как раз в те месяцы и дни! Народная революция… Выход из войны… Мир без аннексий и контрибуций… Обещанье свободы, равенства и братства… Фанатическая вера в возможность справедливого общества… Вступление в экспериментальную эру истории… Может, это-то и было нужнее всего?