Страница 120 из 169
Чарльз Дарвин стоял тут же и с высоты своего баскетбольного роста ободряюще улыбался Марсдену. Но Марсден уже не был мальчиком, как в те годы, когда он ассистировал Гейгеру. Он готовился к самостоятельной профессуре в Веллингтонском колледже Новозеландского университета, куда прочил его Резерфорд. Из ученика он уже сделался учителем: руководил манчестерским практикумом по радиоактивности. Теперь у него самого бывали ассистенты. В тот момент он с молоденьким Перкинсом вел исследование неизученных радиоактивных превращений в семействе актиния. И едва ли ему могла понравиться перспектива прервать собственную работу ради проверки чужих выкладок… Он без энтузиазма осведомился, о чем, в сущности, идет речь. Резерфорд объяснил:
— Нужно снова посчитать сцинцилляции, Эрни. Кто же это сделает лучше? А с актинием пусть пока повозится Перкинс один. — И добавил: — Может быть, мы не пожалеем о потерянном времени…
Он добавил это, не имея в виду решительно ничего определенного. Просто вспомнил, как ровно пять лет назад, тоже невзначай, попросил он того же Марсдена посмотреть, нельзя ли наблюдать прямое отражение альфа-частиц. И Марсден вспомнил о том же. И они чуть улыбнулись друг другу. И вероятно, потому улыбнулись, что у обоих мелькнула прельстительная мысль: если тогда родилось атомное ядро, отчего бы и сейчас не родиться чему-нибудь эдакому?
Впрочем, может быть, все началось с других психологических подробностей. Но важно, что вначале была встреча Резерфорда, Дарвина, Марсдена. В этом варианте многое документально точно.
Замысел Дарвина был очень понятен.
До сих пор при изучении рассеяния альфа-частнц всех интересовала судьба только самих этих частиц. Так было и в опытах Гейгера—Марсдена по рассеянию в твердых мишенях и в опытах Резерфорда—Нэттолла по рассеянию в газах. Измерялось лишь то, что имело отношение к поведению альфаснарядов: углы их отклонения от прямого пути, и прочее, и прочее. По этим данным делались умозаключения о свойствах атомов рассеивающей среды. Но что происходило при альфабомбардировке с самими бомбардируемыми атомами, никак не регистрировалось.
А что тут можно было регистрировать? Особенно в случае мишеней из тяжелых металлов. Их атомные ядра — массивные и многозарядные — при столкновении с альфа-частицами не могли заметно изменить даже свое механическое движение. Поддавался измерению разве что суммарный тепловой эффект от долгой альфа-бомбардировки. (Тот, что Резерфорд когда-то замерял в Монреале с Говардом Бэрнсом, а потом в Манчестере — с Гарольдом Робинзоном.)
Другое дело — легчайшие ядра, водородные. Альфа-частицы в четыре раза массивней их и, если позволительно так выразиться, в два раза заряженней. Дарвин решил теоретически рассмотреть рассеяние альфа-лучей на водороде и предсказать, что будет происходить не только с альфа-частицами, но и с Н-частицами, то есть с водородными ядрами. Несложные расчеты сразу продемонстрировали возможность яркого количественного эффекта.
В результате прямого попадания альфа-частицы в Н-ядро оно приобретет скорость в 1,6 раза большую, чем скорость самого альфа-снаряда. И оно способно будет пролететь сквозь толпу других водородных атомов расстояние, в четыре раза превышающее пробег альфа-частиц.
Конечно, прямое попадание или лобовое столкновение — статистическая редкость. Но при хорошем источнике альфалучей и достаточно плотной атмосфере водорода такое событие обещало быть довольно вероятным. И ожидалось появление немалого числа длиннопробежных Н-частиц. Резерфорду казалась вполне реальной перспектива наблюдать их по вспышкам на сцинцилляционном экране.
— Если за дело возьмется такой мастер, как старина Марсден, все будет в полном порядке, не правда ли, Эрни?..
Однако почему Резерфорду так хотелось знать, «прав ли Чарли»? Ради лишнего подтверждения планетарной модели атома? Вообще-то говоря, в те времена даже ради одного этого стоило ставить трудоемкие опыты. Но они сулили и кое-что большее.
Максимальный пробег Н-частицы свидетельствовал о максимальной силе взаимодействия между нею и альфа-частицей, то есть о наибольшей силе отталкиванья двух одноименно заряженных шариков: водородного ядра (Н+) и ядра гелия (Не++). А эта кулоновская сила при прочих равных условиях всего больше, когда заряды сближаются всего теснее. Сойтись же ближе, чем на сумму своих радиусов, два твердых шарика не могут. И потому появлялась возможность добыть оценку геометрических размеров двух самых легких атомных ядер.
По Дарвину получалось так: сумма радиусов Н+ и Не++ должна иметь величину порядка 10–13 сантиметра. Точнее: не больше 1,7·10-13 сантиметра. Иными словами, у легких ядер должны обнаружиться электронные размеры. Это ли не было обещанием содержательной информации!
А кроме того, картина рассеяния позволяла сделать важные выводы о распределении сил в окрестностях атомного ядра.
Как и пять лет назад, Марсден снова стал засиживаться в лаборатории допоздна. Правило шефа — «ступайте-ка домой и думайте!» — снова на время перестало действовать. Теперь о Марсдене, как прежде о Гейгере, можно было говорить, что он превратился в «демона счета» сцинцилляций. Такое же превращение ждало и демонстратора Вильяма Кэя: по весьма дальновидному распоряжению шефа он должен был помогать Марсдену.
Резерфорд знал, что через год Марсден отбудет профессорствовать в Новую Зеландию, и словно бы предвидел дни, когда в опустевшей лаборатории не на кого будет положиться, кроме Кэя. У него же самого теперь еще меньше, чем раньше, хватало смиренной выдержки для такой работы. Да и было у него теперь оправданье перед самим собой: стариковские очки, что завел он пять лет назад.
Очень скоро стало воочию ясно, что выкладки Дарвина верны. И, не дожидаясь, пока Марсден по всем правилам доведет до конца свое исследование, Резерфорд уже в мартовском выпуске «Philosophical magazine» за 1914 год опубликовал статью «Структура атома», где имена Дарвина и Марсдена склонялись на каждой странице. В первых же строках он кратко резюмировал значение теоретической работы одного и экспериментальной — другого:
…недавние наблюдения над прохождением альфа-частиц через водород существенно осветили вопрос о размерах атомного ядра.
Убедительная простота, с какою манчестерцы получили эти фантастически малые размеры, произвела большое впечатление на физиков — по крайней мере в Англии. На заседании Королевского общества 27 июня 1914 года, где сэр Эрнст вел дискуссию о строении атома, было предложено окрестить величину 10–13 сантиметра «резерфордовой единицей длины»:
0,000 000 000 0013 см = 1 резерфорд.[10]
Этим приятно-торжественным актом, пожалуй, и завершилась бы недолгая предвоенная история опытов по рассеянию альфа-частиц на легких ядрах, если бы…
Если бы в дело снова не замешалось бывалое «если бы»!..
Оно замешалось в дело уже в самый канун войны, когда Резерфорд беззаботно готовился к путешествию на памятный нам Австралийский конгресс Би-Эй, собираясь потом погостить еще на родине и не рассчитывая вернуться в Манчестер раньше января следующего года. Перед столь долгим отсутствием ему, естественно, захотелось обговорить со своими мальчиками перспективы их исследований. И вот, когда черед дошел до Марсдена, выяснилось, что будущий профессор Веллингтонского колледжа пребывает в подавленном настроении из-за непонятных капризов его экспериментальной установки.
В утешение он услышал вопрос: а разве не так начинаются превосходнейшие открытия? И сентенцию, что лучше неудач только катастрофы.
Вообще-то говоря, как раз с Марсденом шеф тогда вовсе и не намеревался вести деловые разговоры: «счастливые дни Манчестера» для Марсдена подходили к концу — одной ногой он, в сущности, был уже в Веллингтоне. И Папе хотелось лишь обнять его на прощанье… Но пришлось поплотнее усесться возле марсденовской установки.
10
Это предложение англичан было со временем почему-то забыто. И сейчас для «резерфордовой единицы длины» принято наименование «ферми» — в честь младшего современника Резерфорда — великого итальянца Энрико Ферми.