Страница 5 из 19
Пожалуй, ни одно из положений механики не вызывало, да и сейчас не перестает вызывать столько споров и путаницы, как принцип Даламбера. В 20-е годы прошлого века против него выступали философы, обвиняя его автора в недиалектично сти: по принципу Даламбера изучение динамики сводится к исследованию статики, представляющей собой частный случай динамики. В 30-е годы возникла дискуссия о силах инерции между инженерами-практиками и механиками-теоретиками. Практики утверждали, что силы инерции реальны и именно они производят те действия, которые тела совершают «по инерции».
Последняя из этих дискуссий состоялась в 1983 году в актовом зале МВТУ им. Баумана и закончилась убедительной победой сторонников фиктивности сил инерции.
Каков же современный взгляд на реальность сил инерции? Исчерпывающий ответ на этот вопрос дал академик А. Ю. Ишлинский [17] : «Реально существующими объявляются лишь силы, вызывающие ускорения материальных точек и тел относительно „абсолютной“ системы координат (инерциальной системы отсчета – Н. Г.). Они выражают меру механического взаимодействия тел в природе... Следует отличать так называемые даламберовы силы инерции от сил инерции, вводимых при рассмотрении движения материальных точек и тел по отношению к подвижным системам координат. Последние будут именоваться эйлеровыми силами инерции. И даламберовы, и эйлеровы силы инерции не являются силами физическими и в этом смысле нереальны. Введение этих несуществующих сил чисто условное...»
Тем не менее в технической литературе существует огромное количество ошибок этого плана. Например, при изучении движения гибких связей – ремней, цепей – по криволинейным траекториям, силу, действующую на элемент массы, в учебниках чаще всего направляют не в сторону нормального ускорения, а в противоположную. Между тем, учащиеся из курса физики уже знают, что сила должна быть направлена в ту же сторону, что и вызываемое ею ускорение, согласно второму закону Ньютона. Возникает путаница, которой так боялся Эйлер!
Этому вопросу следует уделить в школе повышенное внимание, особенно со школьниками, которые в дальнейшем будут обучаться в технических вузах.[1]
2.7. Вопрос. Что такое инерцоид?
Ответ. Самым «вредным» последствием признания «реальности» сил инерции являются так называемые инерцоиды, или безопорные движители. Согласно определению одного из создателей инерцоида «это механизм, осуществляющий самостоятельное перемещение, независимое от окружающей среды, преодолевая ее сопротивление». Конечно же, это определение некорректно.
В Российской государственной библиотеке даже заведен новый библиографический раздел: «Инерцоиды. Их теория.»
Созданием конструкций «безопорных движителей» и их теории заняты тысячи, если не более, человек только в России – почти столько же, сколько занимаются «вечными двигателями». Изобретатели получают патенты, изготавливают на заводах опытные образцы; публикуют статьи и даже книги по этому вопросу.
Каким же образом должны, по замыслу изобретателей, работать инерцоиды? Движение инерцоида иллюстрирует рис. 5. Если бить молотком по заднему краю санок, то они толчками будут двигаться вперед. То же самое произойдет и с колесной тележкой. Если в этом опыте человека заменить механизмом, то получится инерцоид.
Рис. 5. Схема, поясняющая движение инерцоида.
Действие самых различных инерцоидов, как бы сложны они ни были, сводится к одному: созданию кратковременного импульса, но с развитием большой силы, в одну сторону, и длительного, но с малой силой – в другую. Сумма импульсов равна нулю, и машина одними внутренними силами с места не сдвинется. Хитрость здесь в том, что длительность второго импульса можно сделать весьма большой, а силу – очень малой, меньше любого, даже очень незначительного трения. Тогда механизм и не сдвинется во время отведения молотка, а в сторону коротких и резких импульсов будет продвигаться толчками.
Таким образом, реально инерцоид движется только из-за сопротивления окружающей среды, например, сил трения, удерживающих его от движения назад. Создатели же инерцоидов отрицают необходимость каких-либо внешних сил для их движения, приписывая весь эффект действию «реальных» сил инерции, и планируют их применение главным образом для передвижения в космосе, где нет окружающей среды. Использование же инерцоидов в реальной сопротивляющейся среде их не интересует, хотя такие машины давно созданы и работают.
2.8. Вопрос. Какие устройства применяют «принцип инерцоида» для работы в реальных условиях?
Ответ. Такие устройства, называемые обычно виброходами, достаточно широко используются. В 1927 году в России был получен патент на машину, в которой эксцентрично укрепленные вращающиеся грузы передвигают машину прыжками по земле. В 1939 году в Институте механики АН СССР был разработан виброход (по принципу, показанному на рис. 5), а в институте НАМИ – импульсно-фрикционный движитель, который аналогичным образом перемещался по дороге, причем при движении вперед основание «отрывалось» от дороги, а при импульсе назад – прижималось к ней, чтобы машина не дала хода назад.
Более того, созданы устройства аналогичного действия, пробивающие себе ходы в земле для прокладки кабелей и других коммуникаций под насыпями, путями и т. д.
Вибромолоты, устанавливаемые на сваи, тоже относятся к описанному типу устройств, причем этими же вибромолотами можно не только забивать, но и вытаскивать сваи. Надо сказать, что вытаскивание сваи вибромолотом, закрепленным на ее вершине – зрелище поистине фантастическое!
А совсем недавно найдено еще одно неожиданное применение устройств подобного рода. В 2003 году автором вместе с австралийскими врачами запатентована самоходная «виброкапсула», перемещающаяся в кишечнике человека для его обследования. Для перемещения в петлях кишечника, пожалуй, другой способ движения невозможен. Устройство было испытано в Австралии и показало хороший результат.
2.9. Вопрос. Что такое масса гравитационная и масса инертная? Как соотносятся между собой эти массы?
Ответ. Для определения массы тела в физике имеются две основные зависимости. Из второго закона Ньютона массу можно определить как
где F – сила, действующая на массу т;
a – ее ускорение.
Таким образом определяется инертная масса, так как в основе этого закона лежит свойство инертности.
Из закона всемирного тяготения, также открытого Ньютоном, массу т, например падающего у поверхности Земли тела, можно определить как
где F– сила тяжести тела;
g – ускорение свободного падения, равное GM/R2, где G – гравитационная постоянная, М – масса Земли, R – радиус Земли.
При постоянных G, М, R ускорение свободного падения у поверхности Земли g постоянно. Однако масса, определенная из выражения (2.6), уже не инертная, а гравитационная. Так равны ли эти массы – инертная и гравитационная, или нет?
Доказательство их равенства может быть получено из следующего рассуждения. Если в вакууме одновременно сбросить на Землю два тела, одно из которых массивнее другого, то оба тела будут падать с одинаковым ускорением. Так как для обоих тел а – g, следовательно, и масса инертная равна массе гравитационной
Как это ни удивительно, проводились достаточно хитроумные и дорогостоящие опыты, подтверждающие равенство инертной и гравитационной масс с точностью до 10-11. Эта точность лишний раз свидетельствует о том, что инертная и гравитационная массы эквивалентны друг другу, попросту – это одно и то же. На этом «принципе эквивалентности» Альберт Эйнштейн (1879–1955) построил свою общую теорию относительности [24] .
1
Гулиа Н. В. Правильно трактовать явление инерции. – Вестник высшей школы. – 1983. – № 5.