Добавить в цитаты Настройки чтения

Страница 61 из 85

When I came back to the United States, I wanted to know what the situation was with beta decay. I went to Professor Wu’s laboratory at Columbia, and she wasn’t there, but another lady was there who showed me all kinds of data, all kinds of chaotic numbers that didn’t fit with anything. The electrons, which in my model would have all come out spi

When I got back to Caltech, I asked some of the experimenters what the situation was with beta decay. I remember three guys, Hans Jensen, Aaldert Wapstra, and Felix Boehm, sitting me down on a little stool, and starting to tell me all these facts: experimental results from other parts of the country, and their own experimental results. Since I knew those guys, and how careful they were, I paid more attention to their results than to the others. Their results, alone, were not so inconsistent; it was all the others plus theirs.

Finally they get all this stuff into me, and they say, “The situation is so mixed up that even some of the things they’ve established for years are being questioned—such as the beta decay of the neutron is S and T. It’s so messed up. Murray says it might even be V and A.”

I jump up from the stool and say, “Then I understand EVVVVVERYTHING!”

They thought I was joking. But the thing that I had trouble with at the Rochester meeting—the neutron and proton disintegration: everything fit but that, and if it was V and A instead of S and T, that would fit too. Therefore I had the whole theory!

That night I calculated all kinds of things with this theory. The first thing I calculated was the rate of disintegration of the muon and the neutron. They should be co

I went on and checked some other things, which fit, and new things fit, new things fit, and I was very excited. It was the first time, and the only time, in my career that I knew a law of nature that nobody else knew. (Of course it wasn’t true, but finding out later that at least Murray Gell-Ma

The other things I had done before were to take somebody else’s theory and improve the method of calculating, or take an equation, such as the Schrodinger Equation, to explain a phenomenon, such as helium. We know the equation, and we know the phenomenon, but how does it work?

I thought about Dirac, who had his equation for a while—a new equation which told how an electron behaved—and I had this new equation for beta decay, which wasn’t as vital as the Dirac Equation, but it was good. It’s the only time I ever discovered a new law.

I called up my sister in New York to thank her for getting me to sit down and work through that paper by Lee and Yang at the Rochester Conference. After feeling uncomfortable and behind, now I was in; I had made a discovery, just from what she suggested. I was able to enter physics again, so to speak, and I wanted to thank her for that. I told her that everything fit, except for the 9 percent.

I was very excited, and kept on calculating, and things that fit kept on tumbling out: they fit automatically, without a strain. I had begun to forget about the 9 percent by now, because everything else was coming out right.

I worked very hard into the night, sitting at a small table in the kitchen next to a window. It was getting later and later—about 2:00 or 3:00 AM. I’m working hard, getting all these calculations packed solid with things that fit, and I’m thinking, and concentrating, and it’s dark, and it’s quiet … when suddenly there’s a TAC-TAC-TAC-TAC—loud, on the window. I look, and there’s this white face, right at the window, only inches away, and I scream with shock and surprise!

It was a lady I knew who was angry at me because I had come back from vacation and didn’t immediately call her up to tell her I was back. I let her in, and tried to explain that I was just now very busy, that I had just discovered something, and it was very important. I said, “Please go out and let me finish it.”

She said, “No, I don’t want to bother you. I’ll just sit here in the living room.”

I said, “Well, all right, but it’s very difficult.”

She didn’t exactly sit in the living room. The best way to say it is she sort of squatted in a corner, holding her hands together, not wanting to “bother” me. Of course her purpose was to bother the hell out of me! And she succeeded—I couldn’t ignore her. I got very angry and upset, and I couldn’t stand it. I had to do this calculating; I was making a big discovery and was terribly excited, and somehow, it was more important to me than this lady—at least at that moment. I don’t remember how I finally got her out of there, but it was very difficult.

After working some more, it got to be very late at night, and I was hungry. I walked up the maims street to a little restaurant five or ten blocks away, as I had often done before, late at night.





On early occasions I was often stopped by the police, because I would be walking along, thinking, and then I’d stop—sometimes an idea comes that’s difficult enough that you can’t keep walking; you have to make sure of something. So I’d stop, and sometimes I’d hold my hands out in the air, saying to myself, “The distance between these is that way, and then this would turn over this way …”

I’d be moving my hands, standing in the street, when the police would come: “What is your name? Where do you live? What are you doing?”

“Oh! I was thinking. I’m sorry; I live here, and go often to the restaurant …” After a bit they knew who it was, and they didn’t stop me any more.

So I went to the restaurant, and while I’m eating I’m so excited that I tell a lady that I just made a discovery. She starts in: She’s the wife of a fireman, or forester, or something. She’s very lonely—all this stuff that I’m not interested in. So that happens.

The next morning when I got to work I went to Wapstra, Boehm, and Jensen, and told them, “I’ve got it all worked out. Everything fits.”

Christy, who was there, too, said, “What beta-decay constant did you use?”

“The one from So-and-So’s book.”

“But that’s been found out to be wrong. Recent measurements have shown it’s off by 7 percent.”

Then I remember the 9 percent. It was like a prediction for me: I went home and got this theory that says the neutron decay should be off by 9 percent, and they tell me the next morning that, as a matter of fact, it’s 7 percent changed. But is it changed from 9 to 16, which is bad, or from 9 to 2, which is good?

Just then my sister calls from New York: “How about the 9 percent—what’s happened?”

“I’ve just discovered that there’s new data: 7 percent …”

“Which way?”

“I’m trying to find out. I’ll call you back.”

I was so excited that I couldn’t think. It’s like when you’re rushing for an airplane, and you don’t know whether you’re late or not, and you just can’t make it, when somebody says, “It’s daylight saving time!” Yes, but which way? You can’t think in the excitement.

So Christy went into one room, and I went into another room, each of us to be quiet, so we could think it through: This moves this way, and that moves that way—it wasn’t very difficult, really; it’s just exciting.

Christy came out, and I came out, and we both agreed: It’s 2 percent, which is well within experimental error. After all, if they just changed the constant by 7 percent, the 2 percent could have been an error. I called my sister back: “Two percent.” The theory was right.