Страница 22 из 85
The Brazilian leaf-cutting ants, which are otherwise so marvelous, have a very interesting stupidity associated with them that I’m surprised hasn’t evolved out. It takes considerable work for the ant to cut the circular arc in order to get a piece of leaf. When the cutting is done, there’s a fifty-fifty chance that the ant will pull on the wrong side, letting the piece he just cut fall to the ground. Half the time, the ant will yank and pull and yank and pull on the wrong part of the leaf, until it gives up and starts to cut another piece. There is no attempt to pick up a piece that it, or any other ant, has already cut. So it’s quite obvious, if you watch very carefully that it’s not a brilliant business of cutting leaves and carrying them away; they go to a leaf, cut an arc, and pick the wrong side half the time while the right piece falls down.
In Princeton the ants found my larder, where I had jelly and bread and stuff, which was quite a distance from the window. A long line of ants marched along the floor across the living room. It was during the time I was doing these experiments on the ants, so I thought to myself, “What can I do to stop them from coming to my larder without killing any ants? No poison; you gotta be humane to the ants!”
What I did was this: In preparation, I put a bit of sugar about six or eight inches from their entry point into the room, that they didn’t know about. Then I made those ferry things again, and whenever an ant returning with food walked onto my little ferry I’d carry him over and put him on the sugar. Any ant coming toward the larder that walked onto a ferry I also carried over to the sugar. Eventually the ants found their way from the sugar to their hole, so this new trail was being doubly reinforced, while the old trail was being used less and less. I knew that after half an hour or so the old trail would dry up, and in an hour they were out of my larder. I didn’t wash the floor; I didn’t do anything but ferry ants.
Part 3.
Feynman, the Bomb, and the Military
Fizzled Fuses
When the war began in Europe but had not yet been declared in the United States, there was a lot of talk about getting ready and being patriotic. The newspapers had big articles on businessmen volunteering to go to Plattsburg, New York, to do military training, and so on.
I began to think I ought to make some kind of contribution, too. After I finished up at MIT, a friend of mine from the fraternity, Maurice Meyer, who was in the Army Signal Corps, took me to see a colonel at the Signal Corps offices in New York.
“I’d like to aid my country sir, and since I’m technically minded, maybe there’s a way I could help.”
“Well, you’d better just go up to Plattsburg to boot camp and go through basic training. Then we’ll be able to use you,” the colonel said.
“But isn’t there some way to use my talent more directly?”
“No; this is the way the army is organized. Go through the regular way.”
I went outside and sat in the park to think about it. I thought and thought: Maybe the best way to make a contribution is to go along with their way. But fortunately I thought a little more, and said, “To hell with it! I’ll wait awhile. Maybe something will happen where they can use me more effectively.”
I went to Princeton to do graduate work, and in the spring I went once again to the Bell Labs in New York to apply for a summer job. I loved to tour the Bell Labs. Bill Shockley the guy who invented transistors, would show me around. I remember somebody’s room where they had marked a window: The George Washington Bridge was being built, and these guys in the lab were watching its progress. They had plotted the original curve when the main cable was first put up, and they could measure the small differences as the bridge was being suspended from it, as the curve turned into a parabola. It was just the kind of thing I would like to be able to think of doing. I admired those guys; I was always hoping I could work with them one day.
Some guys from the lab took me out to this seafood restaurant for lunch, and they were all pleased that they were going to have oysters. I lived by the ocean and I couldn’t look at this stuff; I couldn’t eat fish, let alone oysters.
I thought to myself, “I’ve gotta be brave. I’ve gotta eat an oyster.”
I took an oyster, and it was absolutely terrible. But I said to myself, “That doesn’t really prove you’re a man. You didn’t know how terrible it was go
The others kept talking about how good the oysters were, so I had another oyster, and that was really harder than the first one.
This time, which must have been my fourth or fifth time touring the Bell Labs, they accepted me. I was very happy. In those days it was hard to find a job where you could be with other scientists.
But then there was a big excitement at Princeton. General Trichel from the army came around and spoke to us: “We’ve got to have physicists! Physicists are very important to us in the army! We need three physicists!”
You have to understand that, in those days, people hardly knew what a physicist was. Einstein was known as a mathematician, for instance—so it was rare that anybody needed physicists. I thought, “This is my opportunity to make a contribution,” and I volunteered to work for the army.
I asked the Bell Labs if they would let me work for the army that summer, and they said they had war work, too, if that was what I wanted. But I was caught up in a patriotic fever and lost a good opportunity. It would have been much smarter to work in the Bell Labs. But one gets a little silly during those times.
I went to the Frankfort Arsenal, in Philadelphia, and worked on a dinosaur: a mechanical computer for directing artillery. When airplanes flew by the gu
After saying all this stuff about how physicists were so important to the army the first thing they had me doing was checking gear drawings to see if the numbers were right. This went on for quite a while. Then, gradually the guy in charge of the department began to see I was useful for other things, and as the summer went on, he would spend more time discussing things with me.
One mechanical engineer at Frankfort was always trying to design things and could never get everything right. One time he designed a box full of gears, one of which was a big, eight-inch-diameter gear wheel that had six spokes. The fella says excitedly “Well, boss, how is it? How is it?”
“Just fine!” the boss replies. “All you have to do is specify a shaft passer on each of the spokes, so the gear wheel can turn!” The guy had designed a shaft that went right between the spokes!
The boss went on to tell us that there was such a thing as a shaft passer (I thought he must have been joking). It was invented by the Germans during the war to keep the British minesweepers from catching the cables that held the German mines floating under water at a certain depth. With these shaft passers, the German cables could allow the British cables to pass through as if they were going through a revolving door. So it was possible to put shaft passers on all the spokes, but the boss didn’t mean that the machinists should go to all that trouble; the guy should instead just redesign it and put the shaft somewhere else.