Добавить в цитаты Настройки чтения

Страница 64 из 87

Кантор решил таким же способом сравнить и бесконечные множества.

Для этого вовсе не обязательно пересчитывать их по элементам. Достаточно установить взаимно однозначное соответствие между элементами обеих множеств. Так вот, все бесконечные множества, элементам которых можно сопоставить числа натурального ряда, называются счётными. Например, множество всех рациональных чисел (целых и дробных).

Теперь естественно ожидать, будто все без исключения бесконечные множества счётны. Нет! Кантор с удивлением открыл и убедительно доказал, что множество всех действительных чисел или точек (рациональных и иррациональных, вместе взятых) неисчислимо. Оно несравненно богаче элементами (обладает большей мощностью), нежели множество одних рациональных точек.

Доказать, что множество счётно, значит придумать правило, по которому нумеруются его элементы. Убедиться же в несчётности того или иного множества — это значит доказать, что такого правила нет и не может быть вообще.

Кантор рассуждал так. Допустим, нам удалось найти способ, как перенумеровать все действительные числа, выписав их в виде последовательности. Если теперь найдётся хотя бы одно число, не входящее в эту последовательность, значит гипотеза о возможности перенумеровать все действительные числа несостоятельна. И Кантор продемонстрировал такое число! Да не одно, а бесчисленное их множество. И какое бы правило нумерации мы ни придумали, всегда найдётся незанумерованный элемент этого множества. Вот какой смысл вкладывается в слова «множество всех точек континуума неисчислимо».

Вот и получается, что у геометрического целого (линии) может появиться совершенно новое качество, отсутствовавшее у его частей — непротяженных, не имеющих размеров точек, когда мощность множества переходит определённый количественный Рубикон. Вспомните линию, составленную из одних рациональных точек! Это множество всюду плотно. Если мы прибегаем к чертежу, то нам и впрямь придётся рисовать сплошную линию — иначе не изобразишь множество всех рациональных точек. Но нет, эта линия разрывна. И разрывна в каждой точке! Лишь континуум обладает непрерывностью, сплошностью. Этого, разумеется, не дано было знать Зенону, для которого все точки-нули, равно как и все бесконечности, выглядели «на одно лицо».

И всё же, даже разобравшись в этих премудростях, математики XX века не смогли окончательно отделаться от кошмара зеноновских противоречий, Канторова теория множеств, которая, как считалось, обезвредила апории Зенона, сама оказалась подорванной изнутри таившимися в ней противоречиями.

У английского писателя Лоуренса Стерна есть роман «Жизнь и мнения Тристрама Шенди, джентльмена». Это весьма своеобычный роман. Повествование ведётся от первого лица, причём герою понадобилось целых двести пятьдесят страниц, чтобы описать своё появление на свет. Лишь в третьей книге мать Шенди разрешается от бремени Тристрамом, джентльменом, а в шестой маленький джентльмен впервые удостаивается чести быть облачённым в штаны.





О странном литературном персонаже вспоминает не кто иной, как Бертран Рассел. Предположим, говорит английский учёный, какой-нибудь новоявленный Тристрам Шенди будет затрачивать по году на описание каждого дня своей жизни. Сумеет ли он накропать мемуары?

Не сумеет, это ясно: человек смертен. А если бы Тристрам Шенди стал вдруг бессмертным? Что тогда? Тогда каждый день найдёт своё отражение в его необычной летописи. Другое дело — странное жизнеописание никогда не закончится. Но каждому дню найдётся соответствующий год, причём количество дней и количество годов в их нескончаемой череде равны, вернее, равномощны. Это бесконечности одного класса. Точно так же последовательность всех чётных чисел равномощна натуральному ряду, включающему и чётные и нечётные числа: 1, 2, 3, 4, 5, 6 и так далее. А натуральный ряд равномощен множеству всех рациональных чисел.

Как видно, правило «целое не равно своей части» утрачивает силу в странном мире бесконечного. А вот и другой вывод, ещё пуще насмехающийся над немощью человеческой интуиции.

Мы уже выяснили: континуум (совокупность всех без исключения точек отрезка) обладает гораздо большей мощностью, нежели редко стоящие на числовой оси метки натурального ряда или даже множество всех рациональных точек, плотное везде. Тем не менее совершенно неожиданным и поистине ошеломляющим выглядит такой Канторов итог: один ли ангстрем, один ли световой год содержат одинаковое «количество» (речь идёт о бесконечном множестве) точек. Уму непостижимо, но бесконечная прямая вмещает не больше точек, чем конечный отрезок! И ещё один сюрприз: трёхмерная фигура (скажем, куб) не богаче точками, чем двумерная (квадрат), а двумерная поверхность — чем просто линия. Целых три года (с 1871 по 1874) Кантор пытался доказать, что взаимно однозначное соответствие между точками отрезка и точками квадрата невозможно. Мучительные поиски долго оставались безуспешными. И вдруг совершенно неожиданно для себя учёный пришёл к совершенно противоположному результату! Он проделал то самое построение, которое считал неосуществимым. Потрясённый своим открытием, он написал математику Дедекинду: «Я вижу это, но не верю этому». А вскоре убедился, что не только квадрат, но и куб равномощен линии…

Этого не знал Зенон. Ньютон тоже. Но это со всей непреложностью доказал Георг Кантор — человек, впервые отважившийся объять необъятное, сосчитать неисчислимое, измерить неизмеримое. Он проник с числом и мерой в таинственный и странный мир, над входом в который красуется кабалистический символ бесконечности — oo, и который исстари вселял в души человеческие мистический хоррор инфинити — ужас перед бесконечным.

Беспрецедентное арифметическое беззаконие потрясло математиков. Но это было ещё только началом. Теория множеств Кантора оказалась чреватой куда более серьёзными парадоксами.

На рубеже XIX и XX столетий выяснилось, что логические рассуждения, которыми оперировал Кантор, ведут к неразрешимым противоречиям. Первый нокаут канторовские построения получили от итальянского учёного Бурали-Форти, сформулировавшего парадокс наибольшего порядкового числа. Однако настоящей сенсацией оказалась знаменитая антиномия Рассела, опубликованная в 1903 году и получившая широкую известность под названием «парадокса брадобрея».