Добавить в цитаты Настройки чтения

Страница 6 из 10



Поскольку метод рекомбинантной ДНК, применяемый Genentech, бросал вызов общепринятым представлениям, среди университетских научных центров нашлось совсем немного желающих предложить фирме партнерство или предоставить лаборатории для проведения работ. Для участия в конкурентной борьбе Genentech требовалось расширить штат ученых, готовых разрабатывать тему использования рекомбинантной ДНК для производства инсулина. При этом работы должны были вестись в арендованных лабораториях в секретном режиме. Обещанная награда была огромной, однако серебряных и бронзовых медалей конкурс не предусматривал: Eli Lilly интересовала только та команда, которая создаст безопасный масштабируемый продукт. Перед Genentech стояла задача обойти соперников и получить контракт, в противном случае, несмотря на проделанный колоссальный труд, команда осталась бы с пустыми руками.

Эксперимент требовал круглосуточной работы по усовершенствованию техники соединения генов, которую в Genentech изначально разработали для синтеза соматостатина. Кроме того, требовалось больше людей. От Eli Lilly выделили дополнительные средства, и учредители привлекли молодых ученых, едва окончивших аспирантуру. Это были чрезвычайно разноплановые специалисты – для проведения биомедицинского исследования Genentech собрала не обычную группу, а суперкоманду{23}, в состав которой вошли химики-органики Деннис Клейд и Дэвид Геддель, работавшие над клонированием ДНК в Стэнфордском исследовательском институте, биохимик Роберто Креа, который специализировался на модификации нуклеотидов, генетик Артур Риггс, который экспрессировал первый искусственный ген в бактериях, и Кейичи Итакура, принимавший участие в разработке технологии рекомбинантной ДНК{24}.

Проблема, с которой столкнулась компания Genentech при синтезе молекулы инсулина, заключается в том, что эта молекула состоит из длинных цепей аминокислот – их в этой молекуле 51, а не 14, как в случае с соматостатином. У вас при мыслях о белке, возможно, возникает ассоциация с яичницей или с куриной грудкой. Для сотрудников Genentech белки, выступающие катализаторами большинства химических реакций в живых клетках и контролирующие практически все клеточные процессы, были ключом к получению инсулина.

Но даже если бы ученым удалось выстроить 51 аминокислоту – комбинацию молекул, составляющих белок, – точно по порядку, то для производства инсулина их все равно нужно было бы воссоздавать{25}. Для этого необходимо правильно выполнить химическое соединение фрагментов ДНК, сшить их и пересадить в бактерии. И это лишь половина дела. Вдобавок требуется взломать структуру бактерий и заставить их вырабатывать синтезированные цепи инсулина, что не так-то просто. Если все сделано правильно, далее предстоит заняться очисткой цепей инсулина, объединить их в полную молекулу, а затем надеяться, что она идентична молекуле, которую вырабатывает поджелудочная железа человека. Эта была невероятная по дерзости идея конструирования на клеточном уровне, которую стремился осуществить страдающий от хронического недофинансирования крошечный коллектив ученых, чьи представления о будущем одним казались мистическими, а другим попросту опасными. Сложность задачи и масштабы конкуренции вынуждали команду Genentech работать втайне от домашних, пропадая в лабораториях и на заброшенном складе, вдали от благословенных залов Гарварда и Калифорнийского университета, в условиях сильнейшего стресса и жестких сроков. Прежде всего предстояло создать синтетический ген с правильной последовательностью ДНК, которая послужила бы инструкцией белку. Затем этот ген нужно было перенести в правильное место организма (в качестве которого выбрали бактерию E. coli, кишечную палочку), способного прочитать инструкции и выработать желаемый белок – в данном случае инсулин.

Ученые старательно смешивали химические вещества, вновь и вновь проверяли различные комбинации, добиваясь верной последовательности в нитях ДНК. Кроме того, нужно было работать с самой бактерией, чтобы понять, в каком именно месте сращивать кишечную палочку с синтетическим геном для производства требуемого белка. Этот процесс напоминает конкурс кондитеров. Представьте, что члены жюри дают вам одну коробку с ингредиентами, вторую коробку с утварью и посудой, а еще духовку и ставят задачу в предельно сжатый срок без всяких подсказок испечь на допотопной кухне шоколадный торт из 12 коржей.

Тем не менее ранним утром 21 августа 1978 г. – гораздо раньше своих конкурентов и к огромному всеобщему (в том числе и собственному) удивлению – они достали из духовки идеальный торт{26}. Специалистам Genentech удалось подобрать точную последовательность ДНК, научить организм выполнять команды и производить инсулин человека. Это событие положило начало биотехнологии и ознаменовало появление новой области науки, получившей название «синтетическая биология». Компания Eli Lilly подписала с Genentech многомиллионный двадцатилетний контракт на разработку и продвижение на рынке первого в мире продукта биотехнологии, хумулина, в 1982 г. получившего одобрение Федерального управления по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA){27}.

Поистине удивительное достижение компании Genentech открыло человеческому обществу новые перспективы на будущее. Мы впервые вмешались в биологический процесс, чтобы путем манипуляций с клетками и молекулами изменить то, что организм делал бы естественным образом. У здоровых людей клетки напоминают футуристическую автоматизированную, компьютеризированную фабрику высочайшего уровня эффективности. Представьте себе сети слаженно работающих современных роботов, 3D-принтеры, по требованию выпускающие все необходимое в любом количестве, цепочку поставок и систему логистики, оптимизированную для максимальной производительности, операционную систему с кодом в миллиарды строк, которая действует безостановочно. За всю историю человечества нам не удалось построить столь технологичную и совершенную машину или фабрики. Ваше тело – это мобильный гигакомплекс примерно из 40 трлн{28} футуристических клеточных фабрик, которые работают сообща, чтобы поддерживать в вас жизнь. Каждая из таких фабрик включает три основных компонента: набор инструкций, систему связи для передачи этих инструкций и производственную линию, выпускающую определенный продукт. Эти компоненты – ДНК, РНК и белок. Необъятная по широте генетическая экосистема, отвечающая за все формы жизни, состоит лишь из этих трех важнейших молекулярных агентов.

Из школьных уроков биологии мы знаем о напоминающей винтовую лестницу двойной спирали ДНК. Ее очень легко узнать, она известна всем и содержит нуклеотиды, обозначенные буквами A (аденин), T (тимин), G (гуанин) и C (цитозин) и химически связанные с сахарофосфатным основанием (дезоксирибоза и кислота). Нуклеотиды, образуя пары, плотно сцепляются друг с другом. Впрочем, разъединяются они относительно легко. При этом двойная спираль ДНК расходится в стороны, подобно застежке-молнии. Когда ДНК «расстегивается», клетка способна создавать точные копии своей ДНК, используя «расстегнутую» ДНК в качестве шаблона для записи новых, дополнительных нитей, а затем вновь сплетает обе нити. Порядок (или последовательность) четырех нуклеотидов в цепи ДНК кодирует информацию, которая необходима клетке для жизни и размножения. ДНК хранит наши генетические инструкции, и, хотя другие микроорганизмы (такие, как вирусы) могут иметь собственный набор инструкций, в пределах клетки правит балом именно ДНК. Не будет преувеличением сказать, что молекула ДНК считается, пожалуй, самой значимой молекулой во все времена (хотя у воды и кофеина, несомненно, тоже есть сторонники).

23

K. Itakura, T. Hirose, R. Crea, A. D. Riggs, H. L. Heyneker, F. Bolivar, and H. W. Boyer, "Expression in Escherichia coli of a Chemically Synthesized Gene for the Hormone Somatostatin," Science 198, no. 4321 (December 9, 1977): 1056–63, https://doi.org/10.1126/science.412251.

24



"Genentech," Kleiner Perkins, www.kleinerperkins.com/case-study/genentech.

25

Genentech. "Cloning Insulin." Genentech: Breakthrough science. One moment, one day, one person at a time. https://www.gene.com/stories/cloning-insulin.

26

Там же.

27

Suza

28

"An Estimation of the Number of Cells in the Human Body," A