Добавить в цитаты Настройки чтения

Страница 2 из 10



Когда мы решили зачать ребенка, то знали, что нам предстоит. В день обратной вазэктомии меня доставили на каталке в операционную, и я лежал, уставившись в потолок. Ритмично мерцали светильники, с каждой вспышкой я мысленно возвращался к словам врача насчет того, как внезапно могут поменяться жизненные планы. Семявыносящие протоки, соединяющие тестикулы и уретру и обеспечивающие вывод спермы наружу, не были пережаты или перевязаны – это упрощало операцию. Хирург их полностью перерезал и прижег, чтобы не допустить утечки внутри организма. Для восстановления проходимости требовалась филигранная микрохирургия под общим наркозом.

18 месяцев мы тщетно надеялись, что жена забеременеет. Я прекрасно понимал, в чем дело… и сознавал, что теперь практически не способен изменить ситуацию. Операция прошла успешно, но система слишком долго не работала. Анатомически у меня все было в порядке. Просто мой организм отказывался пойти навстречу.

Сегодня ученые переписывают правила нашей реальности. Страдания, через которые нам обоим довелось пройти на пути к родительству, в ближайшие десятилетия могут стать аномалией. Новое научное направление обещает пролить свет на то, как зарождается жизнь и как ее можно воссоздавать при самых разнообразных устремлениях: чтобы мы имели возможность лечить людей без лекарственных препаратов, получать мясо, не забивая животных, и создавать семьи, когда подводит природа. У этого направления, получившего название «синтетическая биология», единственная цель: обеспечить доступ к клеткам ради написания нового – и, возможно, лучшего – биологического кода.

В XX столетии в центре внимания биологов был демонтаж, например, тканей, клеток, белков, ради того чтобы понять, как они функционируют. В нынешнем веке новое поколение ученых, напротив, занимается сборкой новых материалов из предоставленных жизнью строительных блоков. При этом в зарождающейся области знаний – синтетической биологии – многим уже удалось достичь успехов. Инженеры проектируют для биологии новые компьютерные системы, а недавно созданные компании продают принтеры, способные превращать компьютерный код в живые организмы. Архитекторы Всемирной паутины используют ДНК в качестве жестких дисков. Ученые создают системы «орган на чипе»: представьте себе полупрозрачную костяшку домино с вмонтированными в нее наноразмерными человеческими органами, которые живут и растут вне тела человека. Совместными усилиями биологи, инженеры, программисты и многие другие специалисты изобрели машину творения – комплексную систему, включающую людей, научные лаборатории, вычислительные устройства, государственные структуры и предприятия, которые создают новые интерпретации жизни и новые ее формы.

Машина творения служит двигателем великой трансформации человечества, которая уже началась. Пройдет совсем немного времени, и жизнь больше не будет делом случая, а станет результатом замысла, отбора и выбора. Машина творения будет решать, как нам осуществлять зачатие детей и какое определение дать семье, как распознавать болезни и бороться со старением, где строить дома и как питаться. Она сыграет важнейшую роль в ликвидации последствий изменения климата и в конечном счете в нашем выживании как вида в долгосрочной перспективе.

Машина творения включает в себя множество различных биотехнологий, все они созданы для редактирования и перепроектирования жизни. Целый ряд новых биологических технологий и методов, относящихся так или иначе к синтетической биологии, позволит нам не просто читать и редактировать код ДНК, но и писать его. А значит, вскоре мы научимся программировать живые биологические структуры, как если бы они были крошечными компьютерами.

При помощи одной из таких технологий, CRISPR-Cas9{2}, с начала 2010-х гг. стало возможным редактирование кода ДНК. Этот метод, который ученые называют молекулярными ножницами и в котором используются биологические процессы, чтобы вырезать и вставлять генетическую информацию, регулярно попадает в заголовки новостей о революционных медицинских вмешательствах, например о редактировании генов слепых людей с целью помочь им обрести зрение. Ученые используют физические молекулярные ножницы CRISPR и сращивают молекулу ДНК, выступающую как своего рода биологическое письмо, в котором буквы переставлены на новые места. Проблема заключается в том, что у исследователей нет возможности непосредственно наблюдать за тем, какие изменения вносятся в молекулу, с которой они взаимодействуют. Каждый шаг требует лабораторных манипуляций, их также необходимо подтвердить опытным путем, и в итоге вся эта работа становится весьма опосредованной, трудоемкой и отнимающей много времени. Синтетическая биология переводит процесс манипуляций в цифровую среду. Последовательности ДНК загружаются в программный инструмент (представьте себе текстовый редактор для кода ДНК), что позволяет вносить правки так же легко, как при работе в текстовом процессоре. После того как ДНК написана или отредактирована и результат удовлетворил исследователя, на устройстве, напоминающем 3D-принтер, распечатывается с нуля новая молекула ДНК. Технология синтеза ДНК (преобразование цифрового генетического кода в молекулярную ДНК) непрерывно совершенствуется. С помощью современных технологий без проблем осуществляется печать цепочек ДНК длиной в несколько тысяч пар оснований, которые можно скомпоновать, чтобы создать новые метаболические пути для клетки или даже полный геном клетки. Теперь мы можем программировать биологические системы подобно тому, как программируют компьютеры.

В результате в последнее время наблюдается стремительный рост в той сфере синтетической биологии, где создаются высокоэффективные приложения, включающие биоматериалы, топливо и специальные химические вещества, лекарства, вакцины и даже сконструированные клетки, которые функционируют как микроскопические роботы. Развитию синтетической биологии способствует искусственный интеллект (ИИ): чем активнее набирает силу ИИ, тем больше биологических приложений можно протестировать и реализовать. Средства программного проектирования становятся мощнее, потенциал печати и сборки ДНК постоянно расширяется, и специалисты получают возможность работать над все более сложными биологическими творениями. Хорошим примером тому служит факт, что геном любого вируса в скором времени можно будет написать с нуля. Такая перспектива кому-то покажется пугающей, если учесть, что на момент написания этой книги коронавирус SARS-CoV-2, вызывающий болезнь COVID-19, стал в мире причиной смерти более 4,2 млн человек{3}.

Остановить распространение вируса SARS-CoV-2, как и его предшественников SARS, H1N1, Эбола и ВИЧ, чрезвычайно сложно именно потому, что они представляют собой лишь микроскопический код. Размножаться или воспроизводиться без носителя они не способны. Вирус можно представить в виде USB-накопителя, который вставляют в компьютер: он прикрепляется к клетке и загружает новый код. И, как бы странно это ни прозвучало в разгар глобальной пандемии, вирусы могут дать нам надежду на лучшее будущее.



Вообразите себе магазин приложений синтетической биологии, где в любую клетку, микроб, растение или животное можно загрузить и добавить новые возможности. В 2019 г. британские ученые впервые целиком и полностью синтезировали и запрограммировали геном кишечной палочки{4}. На очереди синтез геномов многоклеточных организмов с миллиардами спаренных оснований – растений, животных и нашего собственного генома. В один прекрасный день мы получим технологический фундамент для лечения любого генетического заболевания человека и в процессе движения к этому спровоцируем «кембрийский взрыв» – вызовем появление множества сконструированных растений и животных для применения их в целях, которые сегодня сложно представить, но которые позволят решить глобальные проблемы: как накормить, одеть, обеспечить жильем и окружить заботой миллиарды людей. В недалеком будущем жизнь станет программируемой, и синтетическая биология дает смелое обещание улучшить бытие человека. Наша цель в этой книге – помочь читателю осмыслить возникающие на горизонте проблемы и открывающиеся возможности. В ближайшие десять лет перед нами встанет необходимость принимать важные решения: стоит ли программировать новые вирусы для борьбы с болезнями, что будет представлять собой генетическая конфиденциальность, кто будет «владельцем» живых организмов, каким образом компании должны получать доходы от сконструированных клеток и как содержать синтетический организм в лаборатории. А также: какой выбор вы сделаете, если сможете перепрограммировать собственное тело? Сильно ли будете мучиться, определяя, редактировать ли – и как именно – ваших будущих детей? Согласитесь ли употреблять в пищу генно-модифицированные продукты, если это смягчит проблему изменения климата? Мы поднаторели в использовании природных ресурсов и химических процессов для сохранения собственного биологического вида. Теперь у нас есть шанс написать новый код, основанный на той же архитектуре, которая является общей для всего живого на нашей планете. Перспективы синтетической биологии – это будущее, построенное на самой мощной, жизнеспособной производственной площадке, которую когда-либо имело человечество. Мы находимся в шаге от нового феерического витка промышленной эволюции.

2

Heidi Ledford, "Five Big Mysteries About CRISPR's Origins," Nature News 541, no. 7637 (January 19, 2017): 280, https://doi.org/10.1038/541280a.

3

"Daily Updates of Totals by Week and State," Centers for Disease Control and Prevention, www.cdc.gov/nchs/nvss/vsrr/covid19/index.htm.

4

Julius Fredens, Kaihang Wang, Daniel de la Torre, Louise F. H. Funke, Wesley E. Robertson, Yonka Christova, Tiongsun Chia, et al., "Total Synthesis of Escherichia coli with a Recoded Genome," Nature 569, no. 7757 (May 1, 2019): 514–18, https://doi.org/10.1038/s41586-019-1192-5.