Добавить в цитаты Настройки чтения

Страница 2 из 38



Система — это упорядоченное множество предметов, обнаруживающих заметные связи и действующих как единое целое{4}. Одна из наиболее существенных сторон исследования систем — выявление и изучение системных связей.

Советская география была подготовлена к восприятию, системного подхода задолго до того, как он получил права гражданства в научной литературе. В 20-х годах академик А. А. Григорьев{5} разработал учение о географической оболочке — материальной системе, состоящей из ряда взаимодействующих геосфер: атмосферы, гидросферы, литосферы. В качестве особой единицы рассматривалась сфера жизни — биосфера. Учение о ней наиболее подробно было разработано академиком В, И. Вернадским{6}.

По представлениям советского географа Д. Л. Арманда{7}, природа — это всеобщая система, состоящая как из естественных предметов и явлений, так и из технических сооружений, созданных людьми. Система природа coстоит из однородных агрегатов — компонентов. Это межзвездное вещество, газы, жидкости, горные породы, растения, животные, технические сооружения и пр. Компоненты, объединенные относительно тесным взаимодействием, образуют природные комплексы. Оболочка Земли — это геосистема, построенная из большого числа систем низшего порядка. В геосистеме прослеживается сеть прямых и обратных связей, стремящихся поддержать ее в состоянии равновесия.

Важной стороной географической и биологической наук является изучение биосферы. Геосистемы, включающие живые организмы, принято называть экосистемами. По определению современного американского биолога Ю. Одума{8} под экосистемой понимается совокупность организмов, живущих на определенной территории и взаимодействующих друг с другом и с неживой природой таким образом, что поток энергии преобразуется в четко выраженную трофическую (пищевую) структуру, видовое разнообразие и круговорот веществ.

Как видно, в основе определения экосистемы лежит представление о потоке энергии. Проследим, как преобразуется энергия в экосистеме. Источником жизни, на Земле является солнечная энергия. Достигая Земли, она поглощается зелеными растениями, которые снабжают ею все остальные элементы экосистемы. Животные в отличие от растений не могут извлекать свободную энергию непосредственно из физической среды. Необходимую анергию животные получают путем питания, поедая растения или других животных. Так происходит перенос или превращение энергии в биосфере. При этом часть энергии неизбежно теряется.

В процессе переноса и превращения энергии в биосфере возникают пищевые, или трофические, цепи. Трофические цепи образуют несколько уровней. На нижнем уровне располагаются зеленые растения, на втором — травоядные животные, на третьем — хищники. Все элементы экосистемы связаны определенными зависимостями. Это обстоятельство позволяет воспользоваться при изучении экосистем моделированием, в частности математическим. Можно попытаться построить некоторые упрощенные модели и, исследуя их, изучить некоторые свойства экосистем, предсказать их поведение в будущем. Одним из наиболее интересных направлений математического моделирования является расчет численности популяций (совокупность особей одного вида, проживающих на данной территории) и регуляции их в природе.

Основой для подобных построений являются следующие соображения. В природе быстрый рост популяций сдерживают такие факторы, как борьба за существование, болезни, естественная гибель, уничтожение хищниками. Если популяция развивается в среде с достаточным количеством пищи, ее численность растет очень быстро. С течением времени сказываются ограничивающие факторы. При определенных условиях наступает равновесие и численность становится более или менее постоянной. Математическое выражение численности популяции имеет вид логистической кривой (рис. 1).

Один из факторов, сдерживающий численность популяций, — конкурентная борьба. Теоретические расчеты и экспериментальные наблюдения показывают, что популяции «жертв» и «хищников» находятся в определенном соответствии (рис. 2).

Рис. 1. Рост численности популяции в естественных условиях



Рис. 2. Соотношение численности «жертв» (I) и «хищников» (II) в естественных популяциях

а) теоретическая кривая

б) результаты наблюдений

С этими данными совпадают оценки современной биомассы растений, а также подсчеты количества животных в различных географических поясах и зонах. На основании этого вычисляется биологическая продуктивность экосистем{9}. Поскольку механизм регуляции биомассы действовал всегда, приведенную модель можно использовать для расчета биомассы прошлых эпох, привлекая результаты палеобиологических исследований.

С началом орудийной деятельности природа становится полем деятельности человека. Возникает новая форма движения материи — социальная, и оформляется качественно более высокая категория — сфера общественной жизни, социальная сфера.

С появлением человеческого общества, социальной сферы резко усложняются связи в геосистеме Земля. Природа обеспечивает самые разнообразные потребности человеческого общества. Для нашего исследования наибольший интерес представляет то, как природа обеспечивает человечество энергией и пищей. Люди используют не все компоненты природной среды, а лишь небольшую их часть — природные ресурсы. Под природными ресурсами в экономической географии понимают вещества и энергию природы, вовлеченные в производство на данной ступени развития общества{10}.

Размер и характер освоения природных ресурсов зависит от потребностей и возможностей общества, т. е. от развития производительных сил. Существенную помощь в. понимании взаимодействия природы и общества способен оказать системный подход. Географическая сфера представляется в виде сложной системы, которую можно назвать экосоциальной. Она состоит из двух подсистем: первая, социальная — это человеческое общество; вторая, экологическая, включает все остальные компоненты природы. Первая подсистема — хозяин, вторая — дом.

Рассмотрим несколько подробнее, из каких элементов должна состоять предлагаемая система. Начнем с экологической подсистемы. Опа должна содержать по крайней мере три блока: климат — элемент, определяющий развитие подсистемы, растительный и животный мир. В реальных экосистемах блоки располагаются в соответствии с потоком энергии и трофическими уровнями. На каждом уровне поток энергии уменьшается, часть его переходит в необратимое тепло. В экологической подсистеме существует сеть прямых и обратных связей, поддерживающих ее в состоянии равновесия, регулирующих количество биомассы и стабилизирующих поток энергии.

Социальная подсистема в качестве основного блока должна включать экономику. Напомним, что в политэкономии под экономикой понимают исторически определенную совокупность общественно-производственных отношений, базис общества. В первобытном обществе экономика подразумевает типы хозяйственной деятельности, направленные на присвоение (охота, рыболовство, собирательство) или производство (земледелие, скотоводство) пищи. В экосоциальной модели экономику можно рассматривать как питающий блок социальной подсистемы, как преобразователь природных ресурсов. Два других блока социальной подсистемы — народонаселение и орудия труда — соответствуют категории исторического материализма — производительные силы.

Социальная подсистема содержит в качестве самостоятельного блока еще один существенный элемент. Это — культура в широком смысле слова: совокупность знаний, опыта, традиций, верований, этические и эстетические представления общества. Культура — блок памяти социальной системы.