Страница 3 из 46
Рис. 1.1. Спектральное распределение энергии солнечного излучения
1 —внеатмосферного 1360 Вт/м2; 2 — наземного полного 1000 Вт/м2, 3 — наземного прямого 834,6 Вт/м2.
Рассматривая энергетические характеристики солнечного излучения, необходимо обратить внимание на одну особенность представления кривых спектрального распределения плотности потока лучистой энергии Солнца (рис. 1.1). На графиках, характеризующих это спектральное распределение, по оси ординат откладывается обычно величина размерность которой не совпадает с размерностью какой-либо энергетической величины, например, поверхностной плотности потока излучения Е (Вт/м2). Как правило, величина Eλ отнесена к единичному интервалу параметра, откладываемого по оси абсцисс, в частности, длины волны излучения (см. рис. 1.1), что облегчает последующие расчеты, в которых используется эта величина (позволяющие, в частности, определить спектральную чувствительность и КПД солнечных элементов). Однако в результате собственно энергетическая величина, определяемая выражением Eλdλ, оказывается неразрывно связанной с интервалом по оси абсцисс, а вид кривой спектрального распределения будет меняться в зависимости от параметра, отложенного по этой оси, например, внешний вид кривой изменится, если по оси абсцисс откладывать значение не длины волны, а частоты излучения. Известный закон смещения Вина дает возможность определить только координату графического максимума кривой, но эта координата может не соответствовать максимуму собственно энергетической величины, например, спектральному положению максимальной энергетической отдачи. Это означает, что специальным выбором шкалы абсцисс спектральной кривой солнечного излучения можно придать вид кривой с максимумом в любой заранее заданной области спектра.
Рис. 1.2. Спектральные характеристики излучения в логарифмической шкале длин волн
1 — Солнце; 2 — абсолютно черное тело при Tc= = 5785 К; 3 — относительная мощность солнечного излучения
В связи с этим во многих работах в качестве наиболее показательной для графического представления спектральной характеристики выбрана логарифмическая шкала длин волн. Использование такой шкалы позволяет выразить спектральную плотность солнечного излучения в единицах поверхностной плотности лучистого потока (Вт/м2), отнесенных к спектральному интервалу, на протяжении которого длина волны излучения меняется в e=2,718… раз (так называемому пелесину — нн). В этом случае (рис. 1.2) максимум кривой распределения солнечного излучения находится там, где имеет место максимальная энергетическая отдача в узком спектральном интервале, а ход кривой отражает спектральную зависимость квантового выхода излучения. На рис. 1.2 изображена также кривая z(λ), характеризующая относительную мощность солнечного излучения, приходящуюся на длины волн меньше заданной (в процентах от полного значения).
Распределение плотности потока излучения, испускаемого Солнцем, по его поверхности достаточно равномерное, но объемный характер излучения приводит к некоторому спаду яркости от центра солнечного диска к краю.
В центре солнечного диска визуальная яркость в 1,22 раза больше средней. Ближе к краю яркость диска уменьшается, изменяется спектр излучения (относительное содержание красных лучей по мере удаления от центра диска возрастает), вследствие того что цветовая температура по краям ниже, чем в центре.
Весь поток излучения передается к внешним частям Солнца радиационным путем, и только в области, расположенной непосредственно под видимой поверхностью Солнца, имеет место конвективный процесс передачи энергии. Фотосфера, видимая поверхность Солнца, в действительности представляет собой очень тонкий слой, толщиной всего несколько сотен километров. Лучи, поступающие от краев солнечного диска, проходят сквозь относительно большие толщи вещества, поэтому от глубоких, более горячих слоев фотосферы приходит сравнительно меньший поток излучения, что вызывает так называемое потемнение к краю диска. Покраснение излучения к краю диска объясняется тем, что длинноволновая часть излучения легче, чем коротковолновая, проникает сквозь толщи вещества.
Космическое солнечное излучение
на границе с атмосферой Земли
Для точных измерений КПД солнечных элементов необходимо обеспечить полное воспроизведение стандартных параметров солнечного излучения, таких, как плотность потока, спектральное и угловое распределение энергии, однородность и стабильность потока. Стандартные параметры солнечного излучения должны быть согласованы — в данном случае между разработчиками солнечных элементов в разных странах мира.
При измерении характеристик солнечных элементов, предназначенных для космоса, в качестве стандарта повсеместно приняты условия, соответствующие условиям солнечного облучения плоскости, расположенной по нормали к направлению на Солнце и удаленной от неги на расстояние, равное одной астрономической единице (среднее расстояние от Земли до Солнца). Энергетическую облученность Ec, соответствующую этим условиям (фактически, условиям площадки, расположенной на границе между атмосферой Земли и космосом), называют солнечной постоянной. Угловой размер Солнца при этом составляет 31′59″, следовательно, в каждую точку освещаемой элементарной площадки попадает пучок лучей, заключенный в конусе с углом ±16′. Поток излучения идеально однороден.
На протяжении последних пятидесяти лет принятое значение солнечной постоянной уточнялось не один раз: в 1923 г. в первых работах по солнечным элементам использовалось 1350 Вт/м2, предложенное К. Дж. Абботом; в 1954 г. Ф. Джонсон получил 1393 Вт/м2; в начале 70-х годов в качестве стандарта было выбрано 1353 Вт/м2, выведенное в США Μ. П. Такаекарой; в настоящее время наиболее достоверным считается 1360 Вт/м2, определенное в СССР Е. А. Макаровой и А. В. Харитоновым.
Зная абсолютное значение солнечной постоянной, можно найти энергию, которая поступила на поверхность солнечных элементов и батарей, работающих во внеатмосферных условиях, что требуется при расчетах их КПД. Однако, чтобы определить полезную электрическую энергию, полученную от солнечного элемента, необходимо точно измерить также спектральное распределение падающей радиации, особенно в интервале спектральной чувствительности современных солнечных элементов (для элементов из кремния — от 0,3 до 1,1 мкм).
Спектральное распределение энергии излучения Солнца неоднократно измерялось как с поверхности Земли, так и непосредственно за пределами атмосферы.
Анализ разнообразной научной информации о характеристиках солнечного излучения дает все основания отдать предпочтение спектральному распределению, предложенному Макаровой и Харитоновым, которое приводится в табл. 1 Приложения.
Именно это распределение используется сейчас и Европейским космическим центром при определении КПД солнечных элементов.
Изменение солнечной постоянной вследствие цикличности солнечной активности изучалось многими исследователями. Анализ наземных измерений солнечной постоянной показывает, что среднее квадратическое отклонение результатов ее определения, связанное с явлениями, происходящими на Солнце, составляет ±0,1 %, а с возможными колебаниями поглощения радиации внутри орбиты Земли — ±0,14 %. Высотные измерения показали, что во вторую половину 22-летнего солнечного цикла солнечная постоянная изменилась не более чем на 0,75 %. Дальнейшие исследования с помощью аппаратуры, установленной на ориентируемых космических станциях, позволят определить изменения солнечной постоянной за больший период времени.