Страница 5 из 14
– Создается объект шифра AES в режиме CBC с заданным ключом и IV.
– Создается объект паддинга PKCS7 для дополнения сообщения до кратности размеру блока (128 бит).
– Сообщение дополняется и шифруется с помощью AES.
– Возвращается IV вместе с зашифрованным текстом.
3. Функция `decrypt_message()`:
– Функция принимает зашифрованный текст и ключ в качестве аргументов.
– IV извлекается из шифротекста.
– Создается объект шифра AES в режиме CBC с заданным ключом и IV.
– Расшифровывается зашифрованный текст с помощью AES.
– Применяется обратное дополнение PKCS7 к расшифрованному тексту.
– Возвращается расшифрованный текст.
4. Пример использования:
– Создается случайное сообщение `b"Hello, world!"`.
– Генерируется случайный ключ длиной 32 байта (256 бит).
– Сообщение шифруется с использованием ключа.
– Зашифрованный текст выводится на экран в шестнадцатеричном формате.
– Зашифрованный текст дешифруется с использованием того же ключа.
– Расшифрованный текст выводится на экран.
Библиотека `cryptography` – это библиотека на языке Python, которая предоставляет высокоуровневые криптографические примитивы для обеспечения безопасности данных. Она предоставляет удобный интерфейс для шифрования, хеширования, генерации случайных чисел, а также других криптографических операций.
`cryptography` стремится предоставить простой и безопасный способ выполнения криптографических операций в Python, используя лучшие практики безопасности и алгоритмы шифрования. Она является одной из наиболее популярных библиотек криптографии для Python и широко используется для разработки безопасных приложений и систем.
Эта библиотека предоставляет высокоуровневые API для многих криптографических операций, что делает ее очень удобной в использовании даже для разработчиков без глубоких знаний криптографии. Она также обеспечивает нативную поддержку для многих алгоритмов шифрования и хеширования, что позволяет выбирать наиболее подходящий алгоритм для конкретной задачи.
Алгоритм RSA (Rivest–Shamir–Adleman) является одним из самых распространенных асимметричных алгоритмов шифрования. В отличие от симметричного шифрования, где для шифрования и дешифрования используется один и тот же ключ, в асимметричном шифровании используется пара ключей: публичный и приватный.
1. Публичный ключ:
– Публичный ключ используется для шифрования данных.
– Он может быть свободно распространен и доступен для всех.
– Публичный ключ обычно используется для шифрования секретной информации перед ее отправкой получателю.
2. Приватный ключ:
– Приватный ключ используется для дешифрования данных, зашифрованных с использованием соответствующего публичного ключа.
– Этот ключ должен храниться в тайне и быть известным только владельцу.
– Приватный ключ обеспечивает возможность дешифрования зашифрованных данных и доступ к оригинальной информации.
Процесс шифрования с использованием алгоритма RSA следующий:
1. Получатель генерирует пару ключей: публичный и приватный.
2. Он распространяет свой публичный ключ, а приватный ключ остается в секрете.
3. Отправитель использует публичный ключ получателя для шифрования сообщения.
4. Получатель использует свой приватный ключ для дешифрования сообщения и получения оригинального текста.
Рассмотрим пример кода на Python, демонстрирующий шифрование и дешифрование сообщения с использованием алгоритма RSA из библиотеки `cryptography`:
```python
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives.asymmetric import rsa
from cryptography.hazmat.primitives.asymmetric import padding
from cryptography.hazmat.backends import default_backend
# Генерация ключевой пары RSA
def generate_rsa_keys():
private_key = rsa.generate_private_key(
public_exponent=65537,
key_size=2048,
backend=default_backend()
)
public_key = private_key.public_key()
return private_key, public_key
# Шифрование сообщения с использованием публичного ключа
def encrypt_message(message, public_key):
ciphertext = public_key.encrypt(
message.encode(),
padding.OAEP(
mgf=padding.MGF1(algorithm=serialization.NoEncryption()),
algorithm=serialization.NoEncryption(),
label=None
)
)
return ciphertext
# Дешифрование сообщения с использованием приватного ключа
def decrypt_message(ciphertext, private_key):
plaintext = private_key.decrypt(
ciphertext,
padding.OAEP(
mgf=padding.MGF1(algorithm=serialization.NoEncryption()),
algorithm=serialization.NoEncryption(),
label=None
)
)
return plaintext.decode()
# Пример использования
if __name__ == "__main__":
# Генерация ключевой пары
private_key, public_key = generate_rsa_keys()
# Оригинальное сообщение
original_message = "Hello, Bob!"
# Шифрование сообщения
encrypted_message = encrypt_message(original_message, public_key)
print("Зашифрованное сообщение:", encrypted_message.hex())
# Дешифрование сообщения
decrypted_message = decrypt_message(encrypted_message, private_key)
print("Расшифрованное сообщение:", decrypted_message)
```
Этот код выполняет следующие шаги:
1. Генерация ключевой пары RSA (`generate_rsa_keys()`):
– В этой функции создается новый объект приватного ключа с помощью метода `generate_private_key()` из модуля `rsa`. Мы указываем `public_exponent=65537` и `key_size=2048` для генерации ключа с параметрами, рекомендуемыми для RSA.
– Затем мы получаем публичный ключ из приватного ключа с помощью метода `public_key()`.
2. Шифрование сообщения (`encrypt_message(message, public_key)`):
– В этой функции мы шифруем сообщение с использованием публичного ключа Боба.
– Мы вызываем метод `encrypt()` у объекта публичного ключа. В качестве аргумента мы передаем байтовую строку, представляющую сообщение, которую мы хотим зашифровать.
– Мы также передаем параметры шифрования, включая метод дополнения OAEP (Optimal Asymmetric Encryption Padding), который является стандартным для RSA.
3. Дешифрование сообщения (`decrypt_message(ciphertext, private_key)`):
– В этой функции мы дешифруем зашифрованное сообщение с использованием приватного ключа Боба.
– Мы вызываем метод `decrypt()` у объекта приватного ключа. В качестве аргумента мы передаем зашифрованный текст.
– Мы также передаем параметры дешифрования, включая тот же метод дополнения OAEP.
4. Пример использования:
– Мы генерируем ключевую пару RSA.
– Создаем оригинальное сообщение "Hello, Bob!".
– Шифруем это сообщение с использованием публичного ключа.
– Дешифруем зашифрованное сообщение с использованием приватного ключа.
– Выводим на экран зашифрованное и расшифрованное сообщения.
Таким образом, код демонстрирует шифрование и дешифрование сообщений с использованием алгоритма RSA, который использует пару ключей: публичный и приватный. Публичный ключ используется для шифрования, а приватный ключ для дешифрования.
Важно отметить, что в этом примере необходимо аккуратно обращаться с приватным ключом, так как его утечка может привести к компрометации конфиденциальных данных.
Этот метод шифрования широко используется в криптографических протоколах, таких как SSL/TLS, который обеспечивает безопасную передачу данных в интернете, такую как совершение онлайн-покупок, доступ к защищенным веб-сайтам и обмен конфиденциальной информацией. Например, при открытии защищенной страницы HTTPS в браузере, сервер отправляет свой публичный ключ, который используется для зашифрования данных, а затем сервер дешифрует их с помощью своего приватного ключа.
Применение алгоритмов шифрования, таких как AES и RSA, в практических задачах обеспечивает защиту конфиденциальности данных при передаче по сети. Они используются в различных областях, включая защищенную передачу файлов, обмен сообщениями, шифрование электронной почты и многое другое. Важно выбирать подходящий алгоритм шифрования и правильно управлять ключами для обеспечения надежной защиты данных в различных сценариях использования.