Добавить в цитаты Настройки чтения

Страница 46 из 48

Именно тогда, когда меристематические глазки «спят», паренхимные ткани клубня стоят на их страже: они обладают особенно высокой способностью быстро и интенсивно образовывать фитоалексины, отвечать реакцией СВЧ в ответ на внедрение патогена, активно образовывать раневую перидерму. Клубни тех сортов картофеля, которые обладают более длительным периодом покоя, характеризуются и более продолжительной устойчивостью к болезням. Как только период покоя у меристем: заканчивается, они могут прорастать и давать, начало новому растению, т. е. выполнять возложенную на них природой функцию, устойчивость паренхимных тканей быстро падает. Отсюда следует: важный практический вывод: сумейте продлить период покоя, и вы сумеете продлить период устойчивости и тем самым одновременно решить две задачи: задержать преждевременное прорастание клубней и защитить их от болезней. Причем речь идет именно о продлении периода, покоя, а не об искусственном подавлении прорастания клубней, поскольку это совершенно разные вещи.

Дело в том, что большинство методов, препятствующих прорастанию, основало на его необратимом подавлении. Примером этому является уже упомянутое γ-облучение, под действием которого деградируют точки роста у клубней, нарушается их структурная и функциональная целостность, а следовательно, и иммунологический контроль. Такие клубни мало синтезируют фитоалексинов и слабо образуют перидерму. Выходит, что методы, подавляющие прорастание клубней и тем самым предохраняющие их от одного вида потерь, как правило, нарушают свойство их естественной устойчивости, из-за чего возрастают потери другого рода.

Способ продления периода покоя для предупреждения прорастания принципиально отличается от подавления прорастания тем, что иммунологический контроль клубней в этом случае не только сохраняется, но продолжает оставаться на высоком уровне. Но для того чтобы продлить покой, нужно знать механизмы, его регулирующие. Наиболее изученными механизмами, регулирующими покой и переход к активному росту, являются фитогормоны. В клубнях картофеля обнаружены все известные фитогормоны, причем в состоянии покоя ведущую роль играет абсцизовая кислота. Это позволяет логически продолжить ту формулу, которая уже была приведена: если хотите продлить период покоя, а следовательно, и устойчивости, то сумейте индуцировать в клубнях образование фитогормона либо найдите способ поддерживать его содержание на нужном уровне. Индуктором образования абсцизовой кислоты оказался этилен, физиологическая активность которого была открыта более 80 лет тому назад Д. Н. Нелюбовым. Новые возможности для применения этилена как фитогормона появились сейчас благодаря синтезу его продуцентов, выпускаемых под разными названиями: этрел, гидрел, дигидрел, компазан. Под влиянием обработки гидрелом в картофеле индуцировалось образование абсцизовой кислоты, содержание которой оставалось на довольно высоком уровне. После обработки гидрелом клубни картофеля не прорастали даже после весьма длительного хранения. Но как только содержание абсцизовой кислоты снижалось и период покоя заканчивался, клубни начинали нормально прорастать и могли быть с успехом использованы для семенных целей.

Так, теоретическая разработка природы состояния покоя, проведенная в нашей лаборатории Н. П. Кораблевой, позволила создать метод предупреждения прорастания клубней без нарушения их иммунологического контроля.

Применение продуцентов этилена оказалось столь же эффективным и для сокращения потерь при храпении репчатого лука и корнеплодов.

Старение есть не столько прожитое, сколько нажитое

Согласно ранее существовавшим представлениям, старение всех организмов наступало вследствие истощения у них энергетических и пластических ресурсов. Поэтому основное внимание исследователей в области храпения плодов долгое время было сосредоточено на использовании возможно более низких температур, для того чтобы замедлить дыхание плодов и подавить деятельность фитопатогенных микроорганизмов. Но сейчас уже хорошо известно, что старение плодов, как и других микроорганизмов, связано не столько с истощением их ресурсов, сколько с накоплением различного рода токсических веществ, которые в молодых плодах вовлекаются в обмен. К примеру, после 9-месячного храпения некоторых сортов яблок в холодильниках содержание сахаров в них уменьшилось лишь на 30 %, тогда как содержание спирта возросло в 2 раза, ацетальдегида — в 4 раза, а некоторых перекисей — в 10 и более раз. В результате способность яблок продуцировать фитоалексины падала в 4–5 раз. Одновременно развивались неинфекционные болезни, внешне проявляющиеся в патологическом побурении плодов.





Уже более 50 лет изучается обнаруженный при созревании многих видов плодов кратковременный подъем дыхания, названный климактерическим, который соответствует кульминации процессов созревания, вслед за чем наступает перезревание. Климактерическому подъему дыхания предшествует биосинтез этилена — основного гормона созревопия, который индуцирует ряд ферментов, характерных для процесса старения. Одним из таких ферментов является малатдегидрогенеза декарбоксилирующая, названная ферментом старения. Его максимальное активирование совпадает с пиком климактерического подъема дыхания. Фермент декарбоксилирует (освобождает СО2) яблочную кислоту, превращая ее в пировиноградную, которая также декарбоксилируется, образуя ацетальдегид. Ацетальдегид и другие токсические продукты, накапливающиеся в ткани, нарушают структуру мембраны вакуоли, в результате чего содержащиеся в ней полифенолы проникают в цитоплазму, где и окисляются полифенолоксидазой, вызывая побурение тканей.

В плодах на последних этапах роста обнаружен сесквитерпеноидный углеводород — фарнезен. Будучи соединением с двумя сопряженными связями, фарнезен легко подвергается перекисному окислению с образованием перекисей, гидроперекисей и свободных радикалов. Имеется большое число работ о накоплении продуктов перекисного окисления липидов в самых различных стареющих организмах, в том числе и у растений.

Из вышесказанного вытекают пути регулирования старения плодов. Именно регулирования, а не подавления, поскольку там, где имеет место только подавление, нарушается иммунологический контроль, что зачастую превращает, победу в поражение. Если старение характеризуется усилением окислительных процессов и повышенным выделением СО2, то пониженно содержания кислорода в среде задержит процессы перекисного окисления липидов и биосинтез этилена, а повышение содержания углекислого газа по законам обратной связи затормозит процессы декарбоксилирования яблочной и пировиноградной кислот, а следовательно, накопление в клетке ацетальдегида и спирта. Тем самым отдаляется наступление климактерикса и старения.

Другой путь избежания накопления в тканях плодов высокотоксических гидроперекисей основан на применении антиоксидантов, действующих по тому же принципу, как и природные антиоксиданты, содержание которых в растительных клетках по мере старения уменьшается. Хорошие результаты были получены при применении антиоксиданта — дилудииа, который тормозит окисление фарнезена и накопление его перекисных продуктов и тем самым позволяет избежать побурения яблок. Теоретические основы старения плодов и способов его регулирования успешно разрабатываются в нашей лаборатории Е. Г. Сальковой.

Здесь приводятся примеры храпения клубней и плодов, уже отделенных от материнского растения, не только потому, что они являются хорошей биологической моделью для изучения иммунологического контроля при покое и старении, по и потому, что сохранить их не менее трудно, чем получить.

Весьма актуальным является дальнейшее более разностороннее изучение периода покоя растений и их перехода к активному росту, а также механизмов старения и связанного с ним возникновения функциональных расстройств и ослабления иммунной системы, создающей угрозу поражения болезнями. Такие исследования могут открыть новые подходы для защиты урожая от потерь.