Добавить в цитаты Настройки чтения

Страница 44 из 48

ВСЕ ВЫРАЩЕННОЕ СОХРАНИТЬ

Издавна в народе говорят: «Не тот урожай, что на полях, а тот, что в закромах». В условиях индустриального сельского хозяйства вовремя убрать и хорошо сохранить урожай порою бывает даже труднее, чем его получить. Многие традиционные способы хранения, вполне соответствующие требованиям небольшого хозяйства, не позволяют сохранить клубни картофеля или корнеплоды свеклы с механическими повреждениями, в какой-то мере неизбежными при уборке урожая с помощью машин; Не рассчитаны эти способы на хранение больших количеств продукции, убранной в ненастную погоду, чего также трудно избежать в крупном хозяйстве.

Особенно велики потери при храпении картофеля, овощей и плодов, а их качество после храпения часто оставляет желать много лучшего. Судя по данным мировой статистики, примерно 15 % мирового урожая уничтожают болезни и вредители во время хранения.

Еще древние врачи наделяли плоды и овощи чудодейственной силой и рекомендовали их для лечения многих болезней. Наоборот, в 50—70-х годах прошлого столетия значение плодов и овощей в питании почти полностью игнорировалось, так как считалось, что ценность всякого пищевого продукта определяется прежде всего его калорийностью. Поскольку плоды и овощи в большинстве обладают малой калорийностью, они рассматривались лишь как вкусовые вещества. И только после установления роли витаминов, минеральных солей, органических кислот и многих других соединений, которыми богаты плоды и овощи, стала ясной их исключительно важная роль для поддержания нормальной жизни человека, его работоспособности и долголетия.

Все это несомненно интересно и важно, но какое, собственно, оно имеет отношение к фитоиммунологии, которой посвящена настоящая книга? Дело в том, что основой всех практических мероприятий по хранению овощей и плодов является прежде всего максимальное использование присущей растительным тканям устойчивости к фитопатогенным микроорганизмам, фунгициды при хранении не применяются. Игнорирование этого условия неизбежно приводило к серьезным просчетам. И, наоборот, на основе подробного изучения физиологических и биохимических процессов, происходящих в растительных тканях на протяжении всего периода хранения урожая, удалось разработать весьма эффективные способы защиты его от болезней и другого вида потерь применительно к требованиям, предъявляемым производственной практикой.

Конечно, свести потери к нулю невозможно, поскольку приходится хранить биологические объекты, в которых при хранении активно продолжаются сложные физиологические и биохимические процессы.

Сложность проблемы состоит в том, что нередко забота о предотвращении одного источника потерь приводит к увеличению потерь другого рода. Например, весьма падежные способы предупреждения прорастания клубней при хранении могут вызвать поражения их возбудителями инфекционных болезней. Эффективные способы защиты плодов от инфекционных болезней подчас вызывают в растительных тканях функциональные расстройства, внешне проявляющиеся в побурении плодов, потере свойственной им консистенции. Совершенно очевидно, что решить проблему хранения урожая можно не с помощью какого-то одного метода, каким бы эффективным он ни был, а введением целой системы организационных и технических мероприятий, направленных одновременно против всех видов потерь. В общем та же интеграция, в основу которой должен быть положен иммунологический контроль за жизнью отделенных от материнского растения органов — клубней, корнеплодов, плодов, луковиц.

Тем не менее время от времени появляются сенсационные сообщения о возможности решения проблемы хранения если не целиком, то в основном с помощью одного способа, применяемого чуть ли не в любых условиях. Это наносит серьезный ущерб делу. Во-первых, отвлекает силы и средства на проведение разного рода проверочных опытов. Во-вторых, и это не менее важно, создает ложное представление о проблеме в целом и необоснованно упрощает пути ее решения.

Несостоявшаяся революция





Крупные успехи, достигнутые в области ядерной физики, стимулировали проведение многочисленных исследований по изучению возможности защиты различных пищевых продуктов, в том числе плодов и овощей, от болезней с помощью ионизирующей радиации в виде радиоактивных изотопов (главным образом Со6») и ускоренных электронов. Характерной особенностью ионизирующих излучений (γ-лучи, Х-лучи) является их способность превращать атомы и молекулы веществ в электрически заряженные частицы — ионы. Поглощение даже сравнительно больших доз ионизирующих излучений практически не вызывает повышение температуры. В этом состоит одна из специфических особенностей ионизирующей радиации, очень важной для использования ее с целью сохранения пищевых продуктов.

Под действием ионизирующей радиации в первую очередь изменениям подвергается вода, являющаяся главной составной частью живых организмов, в частности плодов и овощей. Происходит радиолиз воды — возникновение свободных радикалов. В таком состоянии они могут свободно существовать лишь в течение очень короткого срока времени, измеряемого миллионными долями секунды. Но все свободные радикалы химически весьма активны. Поэтому даже за короткий срок они вступают в самые различные реакции. Свободные радикалы легко реагируют с растворенными в воде веществами, в результате чего усиливаются процессы окисления, распада сложных органических веществ до более простых соединений, образования новых ранее отсутствующих соединений.

Разные организмы, органы, ткани, различные звенья обмена веществ и даже отдельные вещества неодинаково реагируют на действие ионизирующей радиации. Некоторые из них являются очень радиочувствительными, тогда как другие обладают весьма высокой радиоустойчивостью.

Клубни картофеля полностью теряют способность к прорастанию при дозе 10 крад; многие вредители зерна погибают при дозе 30 крад; а некоторые насекомые выдерживают дозу 300 крад. Для уменьшения количества микроорганизмов в 10 раз требуется для одних видов 25 крад, а для других — 400 крад. Сухой чистый крахмал не изменяется при дозе 300 крад, а в клубнях картофеля на него влияет уже доза 3 крад.

Лица, малознакомые с действием ионизирующей радиации, нередко вообще возражают против облучения пищевых продуктов, так как ошибочно полагают, что радиоактивное облучение может привести к таким же отрицательным последствиям, как радиоактивное заражение. Между тем это совершенно различные явления. Кроме того, облучение продуктов осуществлялось лишь при такой дозе ионизирующей радиации, при которой наличие в них наведенной радиоактивности полностью исключается.

Опасность можно ожидать с другой стороны. Поскольку облучение влечет за собой изменения в химическом составе продуктов, нельзя игнорировать возможность возникновения различного рода токсичных, канцерогенных и мутагенных веществ. Поэтому этим вопросам уделяется особое внимание. Судя по результатам длительных исследований в СССР, США, Канаде, Англии, Франции и других странах, во всех испытанных продуктах, облученных при рекомендованных дозах, не было обнаружено вредных веществ. На этом основании в ряде стран органы здравоохранения выдали разрешение на использование в пищу некоторых облученных продуктов. В СССР было, например, выдано разрешение на облучение картофеля с целью предупреждения его прорастания при хранении и на облучение зерна с целью уничтожения вредителей (дезинсекцию). Выдано было также разрешение на облучение плодов с целью уничтожения большей части содержащихся на их поверхности фитопатогенных микроорганизмов и защиты тем самым от инфекционных болезней — основного источника потерь при хранении.

После первых же экспериментов уже стали раздаваться голоса, особенно в США, о предстоящей революции в области храпения пищевых продуктов. Однако революции не произошло, во многих лабораториях исследования были свернуты, а их результаты оказались весьма поучительными. Так, было показано, что облучение плодов при дозе 200 крад позволяет сразу же снизить количество микроорганизмов, содержащихся на их поверхности, в 400 и даже в 1000 раз. Более низкие дозы малоэффективны, а более высокие вызывают ухудшение внешнего вида плодов. Однако уже через 5—10 дней число микроорганизмов на поверхности плодов вновь возрастает почти до исходного уровня, и тем быстрее, чем выше температура хранения. Основная причина этого явления — реактивация, восстановление жизнедеятельности микроорганизмов, не погибших, по лишь «нокаутированных» при облучении. Облученные плоды начинают поражаться даже теми микроорганизмами, которые, хотя и присутствуют на их поверхности, но в обычных условиях не причиняют им вреда. Объясняется это тем, что облучение вызывает серьезные повреждения в иммунной системе растительных тканей, вследствие чего они легче поражаются болезнями. Эти повреждения выражаются в ослаблении способности тканей образовывать раневую перидерму в ответ на механические поранения и синтезировать фитоалексины в ответ на контакт с фитопатогенными микроорганизмами. Облучение вызывает повреждение отдельных структур клетки, в частности ее энергетических центров — митохондрий. В результате происходит разобщение процессов окисления и фосфорилирования, которое состоит в том, что выделяющаяся в процессах окисления энергия рассеивается, а не запасается в особых соединениях (АТФ) для последующего использования на синтетические процессы. Кроме того, значительную часть энергии клетка вынуждена отвлекать от защитных реакций против паразита на репарацию своих собственных повреждений, вызываемых облучением.