Добавить в цитаты Настройки чтения

Страница 19 из 48

Поскольку каждый лектин связывается с определенным углеводом, то добавление извне такого же углевода препятствует связыванию и соответственно предотвращает агглютинацию эритроцитов. Такие моносахара (или олигосахара), блокирующие активные центры лектинов, получили название гаптенов.

В настоящее время лектины успешно используются как инструменты для исследования поверхности клеток и биологических мембран. Особенно перспективным является исследование физиологической функции лектинов. Предполагается, что лектины участвуют в транспорте и накоплении углеводов в растениях, запасании веществ в семенах, процессах клеточного деления, распознавании пестиком типа пыльцы и других процессах. Однако особо важная роль принадлежит лектинам в процессах узнавания и взаимодействия клеток. Именно на этом свойстве и основана защитная роль лектинов в растениях, способных иммобилизовывать фитопатогены.

Иммобилизация может быть нескольких типов, например склеивание между собой проросших и непроросших спор фитопатогенных грибов или клеток бактерий. Так, лектины, выделенные из батата, вызывают слипание спор возбудителя черной гнили; лектин картофеля агглютинирует споры и цисты возбудителя фитофтороза, бактериальные клетки Pseudomonas solanacearum. Естественно, что склеенные клетки и споры не могут прорастать и распространяться и, следовательно, теряют свою вредоносность.

Предположим, споры паразита попадают на пораненный участок растительной ткани. Лектины, присутствующие в растительном соке, выступившем на месте поранения, агглютинируют их и тем самым спасают растение от заражения.

Однако тут есть одна существенная деталь. Дело в том, что лектины растения, как правило, способны склеивать клетки и споры только тех форм патогенов, к которым данное растение устойчиво. Так, лектины батата агглютинируют споры штаммов черной гнили, выделенных из растений кофе, сливы, какао, дуба, лимона, но не из батата. Лектин картофеля агглютинирует 34 авирулентных штамма Р. solanacearum, но не склеивает ни одного из 55 вирулентных. Лектин кукурузы агглютинирует 16 штаммов Erwinia sp., которые авирулентны или слабо вирулентны к кукурузе, и почти не склеивает клетки вирулентных штаммов.

Оказалось, что у вирулентных штаммов бактерий имеются вещества, препятствующие их агглютинации лектинами своего растения-хозяина. Это особого рода экстрацеллюлярная слизь, которая выделяется патогенными штаммами бактерий, окружает их чехлом и препятствует доступу лектинов к поверхности.

Собственно, логично, что вирулентные штаммы патогенов не попадают в лектиновую ловушку своего растения-хозяина. Ведь если бы они в нее попадали, то восприимчивых растений бы не существовало.

Вторым способом обездвиживания патогена является способность лектинов связывать кончик растущей гифы паразитарных грибов. Оказалось, что лектин прорастающих семян пшеницы связывается с гифами паразитарных грибов, оболочки которых состоят из полимера N-ацетил-D-глюкозамина — хитина. Лектин прикрепляется к N-ацетил-В-глюкозамину, образуя поперечные связи между цепями хитина в оболочке грибов. Интересно, что лектин связывает хитин на копчике гиф гриба, поскольку это единственное место, где хитин находится на их поверхности, так как по всей длине гифы, кроме кончика, хитин сверху покрыт слоем глюкана и, следовательно, не доступен для лектина. Но именно кончик гифы — ее наиболее ответственный участок. Здесь формируется новая клеточная стенка, синтезируются новые молекулы хитина, т. е. гифа растет на конце. Растение безошибочно находит наиболее уязвимое место у фитопатогена. Связывая цепи хитина на кончике гифы, лектин растения тем самым прекращает рост паразита.

Весьма возможно, что пшеница таким способом предохраняет свои прорастающие семена от поражения теми паразитарными микроорганизмами, на поверхности которых находится хитин (а таких патогенов чрезвычайно много). Точно так же можно предположить, что лектины семян, обладающих сродством к иным углеводам (например, глюкозе), могут стоять на страже процесса прорастания, охраняя семена от паразитов, оболочки которых состоят из глюканов. Недаром содержание лектинов в семенах настолько высоко, что вызывает удивление» исследователей.

Третьим способом иммобилизации патогенов с помощью лектинов является возможность связывания ими клеток авирулентных штаммов бактерий в сосудах флоэмы, по которым некоторые бактерии (Erwinia amylovorа) распространяются. Возможно, что лектины участвуют в иммобилизации паразита и при других сосудистых заболеваниях.





И, наконец, наиболее впечатляющими работами по иммобилизации бактерий являются исследования американского бактериолога Л. Секвейра. Он последовательно, этап за этапом на протяжении многих лет изучал поведение бактерий Р. solanacearum в тканях табака и картофеля, постепенно раскрывая тайны их взаимоотношений. Большинство фитопатогенных бактерий развивается в межклеточном пространстве растений за счет веществ, выделяемых клетками через плазмалемму и клеточную стенку.

Все началось с наблюдения, что сапрофитные бактерии, либо бактерии, авирулентные к табаку, либо, наконец, вирулентные бактерии, но предварительно убитые нагреванием, после введения в ткани табака как бы окутывались каким-то веществом и прикреплялись снаружи к клеточным стенкам. Клетки, к стенкам которых бактерии прикреплялись, погибали в процессе реакции СВЧ. Если же в ткани вводились живые вирулентные бактерии, ничего подобного не происходило — бактерии быстро развивались в межклеточном пространстве, не вызывая СВЧ-гибели растительных клеток.

Под электронным микроскопом удалось увидеть, что стенка клетки в том месте, где к ней прикрепляется бактерия, сильно изменена, а пленка, окружающая бактерию, как бы выходит из места повреждения клеточной оболочки.

События, предшествующие прикреплению бактерии, развивались следующим образом. На внутренней стороне клеточной стенки, как раз там, где находится бактерия, начинали скапливаться пузырьки (везикулы), которые, по всей вероятности, и транспортируют обволакивающий бактерию материал. Бактериальные клетки как бы попадают в ловушку, которая захлопывается. Разве это не напоминает лист росянки, покрытой капельками слизи, к которым прилипают невезучая муха или комар, которые потом с помощью ресничек притягиваются к поверхности листа?

Удалось показать, что прикрепление бактерии к клеточной стенке происходит с помощью лектина растения. Лектин табака и картофеля связывается с N-ацетил-D-глюкозамином, который присутствует в большинство оболочек грибов и бактерий. В случае Р. solanacearum лектин прикрепляется к липополисахариду, который находится на наружной мембране бактерий.

По-видимому, на иммобилизованную бактерию начинают затем воздействовать ингибиторы, поступающие из погибшей клетки. Ведь легче попасть в неподвижную мишень, чем в движущуюся. К тому же в месте прикрепления бактерии проще создать локальную токсичную концентрацию ингибиторов.

Иммобилизация бактерий на клеточной стенке растения, помимо ее обездвиживания, преследует и другую не менее важную цель — распознавание клеткой растения чужеродного начала в лице проникающего патогена. Обволакивание и прикрепление бактерий служит обязательным этапом в распознавании. Однако эта тема специальной главы, которую вам еще предстоит прочесть.

Что же происходит с вирулентной бактерией? Вот в том-то и дело, что с ней ничего не происходит. Она преспокойно питается содержимым клеток, размножается и распространяется по тканям растений. И причиной всему та самая экстрацеллюлярная слизь, выделяющаяся бактерией наружу и не позволяющая растению ни прикрепить бактерию, ни распознать ее.

До сих пор речь шла об участии лектинов в защите растения от фитопатогенов при несовместимой комбинации паразита и хозяина. Однако в целом ряде случаев связывание поверхностей взаимодействия растения и паразита посредством лектина является условием, необходимым для их совместимости. Особенно ярким примером этому служат симбионтные взаимоотношения корней растений семейства бобовых с клубеньковыми бактериями из рода Rhizobium.