Страница 9 из 10
5.131. Если истинность одного суждения следует из истинности других, это находит выражение в отношениях, в которых пропозициональные формы находятся друг с другом; для нас нет необходимости устанавливать эти отношения, объединяя формы в одном суждении. Эти отношения являются внутренними, их существование непосредственно вытекает из существования суждений.
5.1311. Когда мы выводим q из (p ∨ q) и ~p, отношение между пропозициональными формами «p ∨ q» и «~p» скрыто способом обозначения. Но если вместо «p ∨ q» мы запишем, например, «p | q × | | × p | q», а вместо «~p» – «p | p» (p | q = ни p, ни q), тогда внутренняя связь станет очевидной.
(Возможность вывода fa из (x) × fx показывает, что символ «(x) × fx» содержит в себе всеобщность.)
5.132. Если p следует из q, я могу заключить от q к p, вывести p из q.
Природа взаимосвязи проявляется лишь в двух суждениях.
Они сами являются единственными возможными оправданиями вывода.
«Законы вывода», которые должны оправдывать вывод, как в работах Фреге и Рассела, лишены смысла и потому излишни.
5.133. Все выводы делаются априорно.
5.134. Элементарное суждение нельзя вывести из другого элементарного суждения.
5.135. Нет способа из существования одной ситуации сделать вывод о существовании другой, полностью отличной ситуации.
5.136. Не существует причинной связи, оправдывающей подобный вывод.
5.1361. События будущего нельзя вывести из событий настоящего. Суеверие есть вера в подобную причинную связь.
5.1362. Свобода воли состоит в невозможности знания действий, лежащих в будущем. Мы могли бы узнать их, только будь причинность внутренней необходимостью, как в случае логического вывода. Связь между познанием и тем, что известно, есть связь «логической необходимости».
(Суждение «A знает, что есть p» не имеет смысла, если p – тавтология.)
5.1363. Если истинность суждения не следует из того, что она очевидна для нас, тогда эта очевидность никоим образом не оправдывает нашу веру в его истинность.
5.14. Если одно суждение следует из другого, тогда последнее говорит больше первого, а первое – меньше последнего.
5.141. Если p следует из q, а q следует из p, они являются одним и тем же суждением.
5.142. Тавтология следует из всех суждений: она не говорит ничего.
5.143. Противоречие – такой общий фактор суждений, который не является общим ни для одной пары суждений. Тавтология – общий фактор всех суждений, которые не имеют ничего общего друг с другом.
Можно сказать, что противоречие кроется вовне всех суждений, а тавтология – внутри них.
Противоречие есть внешний предел суждений; тавтология – несубстанциальная точка в центре.
5.15. Если Иr есть количество оснований истинности суждения «r» и если Иrs есть число оснований истинности суждения «s», которые одновременно являются основаниями истинности «r», тогда мы назовем отношение Иrs: Иr степенью вероятности, которую суждение «r» придает суждению «s».
5.151. Вставим в схему пункта 5.101 индекс Иr в качестве числа «И» в суждении r, а индекс Иrs – в качестве числа «И» в суждении s для столбцов, где присутствуют индексы «И» суждения r. Тогда суждение r придаст суждению s вероятность Иrs : Иr.
5.1511. Не существует особого объекта, присущего вероятностным суждениям.
5.152. Когда у суждений нет общих аргументов истинности, мы называем их независимыми.
Два элементарных суждения дают друг другу вероятность 1/2.
Если p следует из q, тогда суждение «q» наделяет суждение «p» вероятностью 1. Достоверность логического вывода есть предельный случай вероятности.
(Применение этого к тавтологии и противоречию.)
5.153. Само по себе суждение ни вероятно, ни невероятно. Событие происходит или нет; третьего не дано.
5.154. Предположим, что урна содержит равное количество черных и белых шаров (и никаких других). Я достаю один шар за другим и кладу обратно в урну. Этим экспериментом я могу установить, что количество вытянутых черных и белых шаров приближается друг к другу при постоянном вынимании.
Это не математическая истина.
Теперь я говорю: «Вероятность вытянуть белый шар равна вероятности вытянуть черный шар», и это означает, что при всех известных мне обстоятельствах (включая законы природы, понимаемые как гипотеза), у одной вероятности нет преимущества перед другой. Иными словами, общая вероятность составляет 1/2, что легко вывести из предыдущего описания.
Этим экспериментом я подтверждаю, что наступление обоих событий не зависит от обстоятельств, о которых я не имею подробных сведений.
5.155. Минимальная единица вероятностного суждения такова: обстоятельства – о которых я мало что знаю – сулят такую-то и такую-то степень вероятности конкретного события.
5.156. В этом отношении вероятность является обобщением.
Она включает в себя общее описание пропозициональной формы.
Мы используем вероятность за отсутствием достоверности – наше знание не является сколько-нибудь полным, но мы знаем нечто об этой форме.
(Суждение может быть неполной картиной конкретной ситуации, но всегда является полной картиной чего-то.)
Вероятностное суждение есть своего рода извлечение из других суждений.
5.2. Структуры суждений находятся во внутренних отношениях друг к другу.
5.21. Чтобы показать эти внутренние отношения, мы можем применить следующий способ выражения: мы можем представить суждение как результат действия, которое порождает его из других суждений (оснований действия).
5.22. Действие есть выражение отношения между структурами его результата и его оснований.
5.23. Действие – то, что нужно сделать с одним суждением, чтобы получить из него другое.
5.231. Это, разумеется, зависит от их формальных свойств, от внутреннего сходства форм.
5.232. Внутреннее отношение, упорядочивающее последовательности, эквивалентно действию, которое порождает один член последовательности из другого.
5.233. Действия не проявляют себя до того, пока одно суждение не возникнет из другого логически значимым путем: до того, пока не начнется логическое конструирование суждений.
5.234. Функции истинности элементарных суждений суть результаты действий над элементарными суждениями. (Я называю эти действия истинностными действиями.)
5.2341. Смысл функции истинности p есть функция смысла p.
Отрицание, логическое сложение, логическое умножение и т. п. являются действиями. (Отрицание меняет смысл суждения на противоположный.)
5.24. Действие проявляет себя в переменной; оно показывает, как можно получить одну пропозициональную форму из другой.
Оно выражает различие между формами.
(То, что основания действия и его результаты имеют общего, есть лишь сами основания.)
5.241. Действие – не характеристика формы, а только различие между формами.
5.242. Действие, создающее «q» из «p», также создает «r» из «q», и так далее. Есть лишь один способ выразить это: «p», «q», «r» и пр. должны быть переменными, позволяющими выразить некие общие формальные отношения.
5.25. Наличие действия не характеризует смысл суждения.
Ведь действие ничего не сообщает; говорит лишь результат, который зависит от оснований действия.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «Литрес».