Добавить в цитаты Настройки чтения

Страница 51 из 149

То же самое относится и к летучим мышам. Хотя их перепончатые крылья совсем не похожи на оперенные крылья птиц, в чувствительности они им не уступают. Они покрыты россыпью осязательных волосков, которые растут из небольших выпуклостей и связаны с механорецепторами[146]{449}. Сюзанна Стербинг установила, что основная масса этих волосков реагирует только на движение воздуха от задней части крыла к передней, что обычно происходит, когда возникает угроза сваливания. Летучие мыши, как и птицы, отслеживают такие моменты и вовремя принимают меры. Волоски позволяют им закладывать крутые виражи, зависать в воздухе, делать обратное сальто, ловя насекомых у себя на хвосте, и даже приземляться лапами вверх. Когда Стербинг удалила волоски с крыльев летучих мышей с помощью депиляционного крема и запустила подопытных в лабиринт, результат не оставил сомнений{450}. Мыши не врезались в стенки, но держались от них на слишком большом расстоянии, а повороты у них выходили более широкими и неуклюжими, тогда как до удаления волосков они пролетали в паре сантиметров от стенок и препятствий и ювелирно выполняли резкие развороты. Для летучих мышей разница между наличием и отсутствием сенсоров воздушного потока – это разница между простым полетом и высшим пилотажем.

Однако есть животные, для которых это разница между жизнью и смертью. Возможно, именно поэтому потоковые сенсоры развились у них в один из самых чувствительных органов на свете.

В 1960 г. на рынок в немецком Мюнхене прибыла партия бананов откуда-то из Центральной или Южной Америки{451}. В ней обнаружились три «зайца» – точнее, крупных паука, каждый размером с ладонь. Этих пауков отправили в Мюнхенский университет, где их начала изучать и разводить Мехтильда Мельхерс. Этот вид, известный теперь как тигровый (за черные и оранжевые полосы на ногах) блуждающий паук, стал за прошедшие годы самым изученным пауком в мире.

Блуждающий паук не плетет паутину, чтобы ловить добычу, а поджидает потенциальных жертв в засаде. На его ногах – сотни тысяч волосков, растущих очень густо, до 400 штук на квадратный миллиметр{452}. Почти все они связаны с нервами и чувствительны к касанию. Достаточно пошевелить хотя бы несколько волосков на одной ноге, и паук либо отдернет ее, либо развернется, выясняя, что происходит. Если на бегу волоски скользнут по какому-нибудь препятствию – например, проволоке, натянутой на пути паука любопытным ученым, – паук приподнимет корпус, перенося его над барьером{453}. Во время брачных игр самец, судя по всему, должен определенным образом стимулировать волоски самки, чтобы она его не съела.

Большинство волосков реагируют только на непосредственное прикосновение, но некоторые, самые длинные и чувствительные, изгибаются и от дуновения ветра. Это трихоботрии – от греческого «трихос» (волос) и «ботрос» (впадина). Как и нитевидные перья у птиц или невромасты у рыб, они представляют собой потоковые сенсоры – только необычайно чувствительные. Они изгибаются даже от движения воздуха со скоростью 2,5 см в минуту – это настолько мягкое дуновение, что его и дуновением не назовешь{454}. Если рассматривать трихоботрии под микроскопом, видно, как они трепещут под воздействием неуловимых потоков, хотя все остальное вокруг них неподвижно. Располагая сотней трихоботрий на каждой ноге, тигровый блуждающий паук фиксирует любые воздушные потоки, витающие вокруг его тела с любой стороны. Этой необыкновенной чувствительностью он пользуется в смертоносных целях.

На родине, в тропических джунглях, паук весь день прячется в палой листве и выбирается оттуда только через полчаса после заката. Он устраивается на листе и ждет. По мере того, как сгущается темнота, порывы ветра становятся все реже, и в плавных движениях окружающего воздуха начинают преобладать низкие частоты, которые паук игнорирует. Его трихоботрии настроены на более высокочастотные колебания, производимые летающими насекомыми, например приближающейся мухой. Даже самая крохотная муха все равно толкает перед собой воздух. Поначалу паук не отличает это движение воздуха от фоновых колебаний. Но когда до мухи останется сантиметра четыре, ее воздушный сигнал делается заметным, как силуэт, проступающий из тумана. Трихоботрии на ближайшей к мухе ноге начинают шевелиться раньше тех, что расположены на других ногах, и, отмечая эту разницу, паук разворачивается в нужную сторону. Когда муха оказывается над одной из ног, воздушный поток дует на трихоботрии сверху, и паук бросается в атаку. Подпрыгнув, он хватает добычу в воздухе передними ногами, стаскивает ее на землю и кусает, впрыскивая яд{455}. «В процессе он даже может корректировать траекторию своего прыжка, – говорит Фридрих Барт, который изучает этих пауков с 1963 г. и наблюдал их прыжки бессчетное число раз. – Я всегда думаю о том, как трудно сконструировать робота, который сможет такое проделывать».





Но и жертвы пауков не совсем беспомощны. У многих насекомых имеются собственные сенсоры воздушного потока{456}. У лесных сверчков на заднем конце брюшка расположены церки – парные отростки, покрытые сотнями волосков, таких же чувствительных, как трихоботрии у пауков, а может, и более того. Эти так называемые нитевидные волоски способны улавливать воздушный поток, создаваемый взмахами крыльев осы. Как выяснил Джером Касас, они различают и почти неуловимое движение воздуха, производимое атакующим пауком.

Главный враг лесного сверчка – паук-волк, который кидается на жертву и заваливает ее. На неровной лесной подстилке паук-волк должен атаковать с того же листа, на котором находится его цель. Он делает это молниеносно, однако Касас обнаружил, что волоски сверчка чувствуют движение паука почти сразу, как тот берет разбег{457}. Собственно, чем быстрее движется паук, тем заметнее он для сверчка. Единственный выход для хищника – подкрадываться как можно медленнее, чтобы, почти не колыхая воздух, подобраться максимально близко для решающего броска. И даже в этом случае шансы на успех составляют примерно 1 к 50. «Победа почти всегда остается за сверчком, – сообщает мне Касас. – Как только он перепрыгивает с этого листа на любой другой, игра окончена. Он уже все равно что в ином мире»[147].

Нитевидные волоски сверчков и трихоботрии пауков обладают почти непостижимой чувствительностью. Для воздействия на них достаточно доли той энергии, которая содержится в одном фотоне – мельчайшем возможном импульсе видимого света. Эти волоски минимум в 100 раз чувствительнее любого зрительного рецептора – как реально существующего, так и теоретически возможного{458}. Количество энергии, которое требуется, чтобы шевельнуть волосок сверчка, близко к тепловому шуму – кинетической энергии колеблющихся молекул. Иными словами, эти волоски фактически невозможно сделать еще более чувствительными, не нарушив законы физики.

Тогда почему они не реагируют на все подряд? Почему пауки не бросаются каждое мгновение на воображаемых насекомых, а сверчки не улепетывают ежесекундно от фантомных пауков? Отчасти дело в том, что волоски откликаются только на колебания с биологически значимыми частотами – на такие, которые производят хищники или жертвы, но не окружающая среда. Кроме того, механорецепторы у основания волосков менее чувствительны, чем сами волоски, и чтобы сработать, им требуется стимуляция посильнее. Наконец, из-за одного волоска паук в атаку не бросится. Животные редко прислушиваются к одному заголосившему механорецептору. Они следят за всем хором.

Зачем же тогда эта невероятная чувствительность каждому волоску? Напрашивается такой ответ: в результате долгой гонки вооружений между хищниками и их жертвами появились сенсоры, улавливающие слабейшие из возможных сигналов. «Но это слишком простой вариант, и мне он кажется не особенно убедительным», – признается Касас. Как биолог, он привык говорить об оптимизации, то есть о стремлении животных извлечь максимум из того, что у них есть, с учетом множества имеющихся ограничений. Однако волоски сверчков – это редкий пример максимизации. «Это практически предел совершенства, и это удивительно. Почему они такие, никто на самом деле не знает»[148].