Страница 38 из 86
В этих условиях необходимость поддержать достаточно высокий объем циркулирующей крови (ОЦК) вполне очевидна. Многие исследователи доказывают, что на этапах гипер- или гиповолюмии поддержание объема ОЦК преобладает над осморегуляцией (Великанова, 1969; Керпель-Фрониус, 1964; Наточин, 1976, и др.).
Сгущение, а следовательно, уменьшение общего объема циркулирующей крови ведет к нарушению сердечно-сосудистой деятельности — снижению скорости кровотока, уменьшению ударного объема сердца (Ажаев, Лапшина, 1971; Fulton, 1956; Whittow, 1964).
Чтобы удержать минутный объем крови и артериальное давление на уровне, близком к нормальному, сердце вынуждено сокращаться чаще (Ротштейн, Таубин, 1952; Авазбакиева, 1954, 1958; Saltin, 1964). Учащение пульса связано также с изменением функционального состояния экстракардиальных центров вегетативной нервной системы под влиянием импульсов с периферических терморецепторов и в результате прямого воздействия нагретой крови на эти центры (Лемер, 1965; Whittow, 1958).
Этот процесс мы постоянно наблюдали во время экспериментов, причем нарастание частоты пульса шло почти параллельно с увеличением температуры тела (рис. 80). Интересно, что на вторые и третьи сутки эксперимента в утренние часы частота сердечных сокращений у испытуемых в покое была в некоторых случаях несколько ниже по сравнению с фоновой. Однако даже небольшая физическая нагрузка вызывала сердцебиение. Значительно учащался пульс при ортостатической пробе. Так, на третьи сутки эксперимента при переходе испытуемого из горизонтального положения в вертикальное частота пульса увеличивалась более чем в 2 раза.
Рис. 80. Изменение частоты пульса во время трехсуточного эксперимента в пустыне
Эти явления свидетельствовали о быстром возрастании нагрузки на сердечно-сосудистую систему и снижении приспособительных механизмов деятельности сердца в условиях высокой температуры окружающей среды. Обнаруженное на электрокардиограмме увеличение зубца Р при одновременном снижении амплитуды зубца Т, косонисходящем снижении сегмента S-T, принимавшем в сочетании с зубцом Т характерную корытообразную форму, свидетельствовало о процессах в мышце сердца, которые нередко регистрируются при коронарной недостаточности или при резком нарушении электролитного обмена.
В тесной связи с изменениями водного обмена находятся наблюдающиеся в пустыне нарушения электролитного равновесия. Недостаток солей в аварийном рационе, большие потери электролитов с потом и мочой приводят к отрицательному балансу таких элементов, как калий, натрий, хлор.
В умеренном климате при небольшом потоотделении организм помимо 12-15 г хлоридов натрия и калия, которые выводятся через почки с мочой, теряет с потом не более 2-6 г (Юнусов, 1960; Dill, 1938; Robinson, 1963, и др.).
Но при воздействии высоких температур, когда потоотделение возрастает до десяти и более литров, потери солей с потом могут даже превышать величину их экскреции с мочой. Возникающий дефицит электролитов может вызвать серьезные расстройства физиологических функций органов и систем даже при полном замещении водопотерь (Minard et al., 1961).
В большей степени выражены компенсаторные реакции, предупреждающие возникновение в организме натриевого дефицита: содержание хлористого натрия в поте снижается с 0,2-0,3% до 0,1-0,15% (Кравчинский, 1963), а в моче падает до минимума (Солуха, 1960; Матузов, Ушаков, 1964; Minard et al., 1961). Даже тепловая олигурия[11], как полагают, не что иное, как своеобразный рефлекс, направленный не столько на сохранение воды в клетках и тканях, сколько на сбережение натрия, основная масса которого выводится с мочой (Тульчинский, 1965; Moore , Segar, 1966).
Так, американские физиологи, проводя тепловые эксперименты в термокамере, установили, что у испытуемых при температуре воздуха 27° содержание натрия в моче снизилось за три часа с 25 до 14 ммоль/ч. При повышении температуры до 46°, а затем до 55° количество натрия снизилось до 8,4 и 7,6 ммоль/ч (Abramson et al., 1967).
В наших экспериментах в пустыне при ограничении водопотребления до 1-1,5 л при температуре окружающей среды 42-44° диурез падал с 1000-1100 мл до 300-400 мл уже на вторые сутки. Содержание натрия в моче уменьшалось со 145 до 15-20 ммоль/сутки, а калия — с 70 до 20-30 ммоль/сутки. Динамика этих процессов представлена на рис. 81.
Рис. 81. Динамика суточного диуреза и экскреции электролитов с мочой во время трехсуточного эксперимента в пустыне
И все же, несмотря на увеличение потерь хлоридов с потом, необходимость их восполнения (особенно натрия) в условиях автономного существования в пустыне весьма спорна. При ограниченном запасе воды соли, содержащиеся в аварийном пищевом рационе, полностью покрывают потребности организма.
Поэтому дополнительное потребление соли при ограничении водопотребления может вызвать нежелательные осложнения, привести к гипертермии, внутриклеточной дегидратации, возникновению калиевого истощения, что повышает вероятность тепловых поражений (Schamadan, Snively, 1967). По нашим наблюдениям дефицит натрия за трое суток эксперимента в пустыне не превышает 5% от общего количества его обменоспособной фракции. Следовательно, солевая добавка необходима лишь в строго определенных случаях: при появлении симптомов солевого изнурения, для предотвращения солевого дефицита, вызванного избыточным питьем воды, при оказании помощи людям в состоянии тяжелой дегидратации.
Особенно тяжелые последствия могут быть вызваны дефицитом калия, механизмы удержания которого в организме весьма маломощны (Stochigt, 1977). Дефицит калия снижает тепловую устойчивость (Schamadan, Snively, 1967; Malhotra et al., 1976), обостряет гипотонию, ослабляет вазоконстрикцию, действие катехоламинов, вызывает значительные нарушения в энергетическом обеспечении физической деятельности (Knochel, 1974).
Как показали исследования, выраженный терапевтический эффект в этих условиях дают калийсодержащие препараты. Так, например, ежесуточный прием панангина (3 раза по два драже, содержащих 36,2 мг калия каждое) в комплексе с метандростенолоном (30 мг/сутки) не только поддерживал концентрацию калия в крови на постоянном уровне, но, главное, способствовал предупреждению нарушений электрической активности миокарда (Волович и др., 1982).
Вода — ключ выживания в пустыне. «Вода, у тебя нет ни вкуса, ни цвета, ни запаха, тебя невозможно описать, тобой наслаждаются, не ведая, что ты такое! Нельзя сказать, что ты необходима для жизни: ты — сама жизнь. Ты наполняешь нас радостью, которую не объяснить нашими чувствами. С тобой возвращаются к нам силы, с которыми мы уже простились» — так писал А. де Сент-Экзюпери, переживший муки жажды в пустыне после аварии самолета.
О том, что испытывает человек, лишенный воды, красноречиво свидетельствуют записи в дневниках участников эксперимента в пустыне:
«Снился сон, просил у каких-то людей воды. Но они пьют на моих глазах, а мне не дают».
«Считаю минуты, а остальное время лежу в забытьи».
«Вижу сны про воду. Очень тяжело. А кто сказал, что должно быть легко? Вот блестящая возможность проверить свою силу воли. Буду терпеть до последних сил».
«Слабость, пелена в глазах. Стараюсь не двигаться. Встает солнце. Такое нежное, что не верится, что оно может так палить. Страшная жажда».
«Сильная слабость. Остаться без воды просто страшно» (Волович, 1974).
Каков должен быть аварийный запас воды, чтобы обеспечить жизнедеятельность человека в условиях автономного существования в пустыне?
Чтобы ответить на этот вопрос, необходимо выявить особенности взаимосвязи, существующей между температурой окружающей среды и скоростью процесса дегидратации. Это имеет важное практическое значение как определяющее сроки автономного существования человека в пустыне. Теоретические расчеты вероятных сроков автономного существования в пустыне в зависимости от температуры воздуха и запаса воды приведены в таблице (Браун, 1952).
11
Уменьшение мочеотделения до пределов, необходимых лишь для удаления из организма продуктов обмена веществ.