Добавить в цитаты Настройки чтения

Страница 15 из 39



Лобачевский, как многие до него, тоже начал с того, что принял противоположное этой аксиоме допущение: к данной прямой через данную точку можно провести по крайней мере две параллельные. Он стремился привести такое допущение к очевидному противоречию, однако, по мере того, как он развертывал все более и более длинную цепь следствий, вытекающих из указанного допущения, становилось все более ясным, что никакого противоречия не только не возникает, но, похоже, и не может возникнуть.

Вместо явного противоречия Лобачевский получил, пусть и необычную, пусть и противоречащую здравому смыслу, но логически стройную и безупречную систему предложений, обладающую тем же логическим совершенством, что и обычная евклидова геометрия.

Впрочем, указав на непротиворечивость построенной им новой геометрической системы, Лобачевский строгого доказательства этой непротиворечивости все равно не дал. Более того, он сам указал на то, что при несомненной логической безупречности обеих геометрических систем – Евклидовой и «мнимой» – вопрос о том, какая из них действительно осуществляется в физическом мире, может быть решен только опытом. В сущности, указывал позже академик П. С. Александров, Лобачевский просто оказался первым, кто взглянул на математику, как на опытную науку, а не как на абстрактную логическую схему, кто отказался от тысячелетнего предрассудка априорности геометрических истин. В точку зрения Лобачевского современная наука внесла лишь одну поправку. Эта поправка состоит в том, что вопрос о том, какая, собственно, геометрия действительно осуществляется в нашем физическом мире, не имеет того непосредственного наивного смысла, который ему придавался во времена Лобачевского. Ведь сами основные понятия геометрии – понятия точки и прямой, родившись, как и все наше познание, из опыта, не являются все же непосредственно нам данными в опыте, а возникли путем той же абстракции от опыта, в качестве наших идеализаций опытных данных, идеализаций, только и дающих возможность приложения математического метода к изучению действительности. В конце концов, геометрическая прямая, уже в силу одной своей бесконечности, не является (в том виде, как она изучается в геометрии) предметом нашего опыта, а является лишь идеализацией непосредственно воспринимаемых нами весьма длинных и тонких стержней или световых лучей.

Мы можем лишь утверждать, указывал академик Александров, что геометрия Евклида является некоей идеализацией действительных пространственных соотношений, вполне удовлетворяющих нас, пока мы имеем дело с «кусками пространства не очень большими и не очень малыми», то есть пока мы не выходим ни в ту, ни в другую сторону слишком далеко за пределы наших обычных, практических масштабов, пока мы, с одной стороны, скажем, остаемся в пределах нашей Солнечной системы, а с другой, не погружаемся чересчур глубоко в глубь атомного ядра.

«Поверхности и линии не существуют в природе, а только в воображении, – писал сам Лобачевский. – Они предполагают, следовательно, свойство тел, познание которых должно родить в нас понятие о поверхностях и линиях».

Положение меняется только тогда, когда мы переходим к космическим масштабам.

Например, современная общая теория относительности рассматривает геометрическую структуру пространства как нечто зависящее от действующих в этом пространстве масс и приходит к необходимости привлекать геометрические системы, являющиеся «неевклидовыми» в гораздо более сложном смысле этого слова, чем тот, который обычно связывается с геометрией Лобачевского.

Лобачевский убедительно показал, что наша геометрия есть всего лишь одна из нескольких логически равноправных геометрий, одинаково безупречных, одинаково полноценных логически, одинаково истинных в качестве математических теорий.



В этом смысле вопрос о том, какая из геометрий истинна, то есть наиболее приспособлена к изучению того или иного круга физических явлений, есть вопрос только физики, а не математики, и притом вопрос, решение которого не дается раз навсегда евклидовой геометрией, а зависит от того, каков избранный нами круг физических явлений. Единственной привилегией евклидовой геометрии при этом остается лишь то, что она была и продолжает оставаться математической идеализацией нашего повседневного пространственного опыта и поэтому, конечно, сохраняет свое основное положение как в значительной части механики и физики, так и в технике.

Профессора И. М. Симонов, А. Я. Купфер и адъюнкт Н. Д. Брашман, которым первым пришлось рассматривать сочинение Лобачевского, высказались о нем довольно пренебрежительно. А опубликованный Лобачевским мемуар «О началах геометрии» вообще подвергся резкой критике журналистов.

«Даже трудно было бы понять и то, каким образом г. Лобачевский из самой легкой и самой ясной в математике, какова геометрия, мог сделать такое тяжелое, такое темное и непроницаемое учение, – возмущался один из них. – Для чего же писать, да еще и печатать такие нелепые фантазии?»

При жизни Лобачевского один только профессор Казанского университета П. И. Котельников публично решился оценить работу Лобачевского положительно, да в 1842 году он был выбран членом-корреспондентом Геттингенского королевского общества по рекомендации великого математика К. Ф. Гаусса, весьма высоко оценившего его работу. Известно, что Гаусс был настолько ею заинтересован (он прочел ее немецкий перевод), что даже собирался изучить русский язык, чтобы прочесть работу Лобачевского в оригинале.

Интерес Гаусса к работе Лобачевского имел под собой вполне реальную основу. Еще в 1818 году Гаусс подошел к мысли о возможности неевклидовой геометрии, однако, немецкое здравомыслие Гаусса, всяческие опасения, что высказанные им идеи не будут поняты, что они ударят по его научной репутации, привели Гаусса к тому, что он оставил их разработку.

К сожалению, этого не знал венгерский математик Больай.

В 1825 году, проходя службу в небольшой крепости Темешвер, этот молодой венгерский лейтенант, занимаясь математикой, тоже пришел к основным положениям неевклидовой геометрии. Правда, по тем же соображениям, что и Гаусс, он тоже не решился обнародовать свои идеи. Кстати, отец венгерского математика, сам математик, зная об увлечении сына, откровенно призывал его держаться от постулата Евклида как можно дальше. «Ты должен отвергнуть это подобно самой гнусной случайной связи! – писал он сыну. – это может лишить тебя всего твоего досуга, здоровья, покоя, всех радостей жизни. Эта черная пропасть в состоянии, быть может, поглотить тысячу таких титанов, как Ньютон, на земле это никогда не прояснится…»