Страница 20 из 78
На что похож этот двигатель? Это не массивный кусок сваренного и скреплённого болтами металла, он без швов, подобный драгоценному камню. Его пустые внутренние ячейки, построенные в ряды, находящиеся примерно на расстоянии длины волны света друг от друга, имеют побочный эффект: подобно углублениям на лазерном диске они преломляют свет, делая различную радужность подобно той, что делает огненный опал. Эти пустые пространства облегчают структуру, уже сделанную из самых лёгких и прочных известных материалов. В сравнении с современными металлическими двигателями, этот усовершенствованный двигатель будет иметь более чем на 90 процентов меньшую массу.
Ударьте слегка по нему, и он отзовётся как колокольчик удивительно высокого для своего размера тона. Установленный в космическом корабле, сделанном тем же способом, он легко поднимет его со взлетно-посадочной полосы в космос и вернёт снова назад. Он выдерживает длительное и интенсивное использование, потому что прочные материалы позволили разработчикам включать большие запасы прочности. Поскольку ассемблеры позволили проектировщикам делать его материал таким, что он при приложении усилия течёт до того, как ломается (оплавляя трещины и останавливая их распространение), двигатель не только прочен, но и износостоек.
При всём своём превосходстве, этот двигатель по сути вполне обычен. В нём просто заменили плотный металл тщательно устроенными структурами из лёгких, прочно связанных атомов. В конечном продукте никаких наномашин нет.
Более продвинутые проекты будут использовать нанотехнологию более глубоко. Они могли бы оставлять в создаваемом объекте сосудистую систему для обеспечения ассемблерной и дизассемблерной систем; их можно запрограммировать на восстановление изношенных частей. Пока пользователи снабжают такой двигатель энергией и сырьём, он будет обновлять свою собственную структуру. Ещё более продвинутые двигатели также могут быть буквально гибкими. Ракетные двигатели работают наилучшим образом, если они могут принимать различную форму при различных режимах функционирования, но инженеры не могут сделать обычный металл прочным, лёгким и при этом гибким. С нанотехнологией, однако, структура более прочная чем сталь и более лёгкая чем дерево могла бы изменять свою форму, подобно мускулу (работая как мускул по принципу скользящих волокон). Двигатель мог бы тогда расширяться, сжиматься и изгибаться таким образом, чтобы обеспечивать требуемую силу тяги в требуемом направлении при различных условиях. С запрограммированными нужным образом ассемблерами и дизассемблерами, он мог бы даже глубоко изменять свою структуру через длительное время после того, как покинул чан, в котором рос.
Короче говоря, воспроизводящиеся ассемблеры будут копировать себя тоннами, потом делать другие продукты, такие как компьютеры, двигатели ракет, стулья и т. д. Они будут делать дизассемблеры, способные разрушить скалу, чтобы получить из неё сырьё. Они будут делать коллекторы солнечной энергии, чтобы обеспечивать энергией. Хотя сами они маленькие, строить они будут большое. Группы наномашин в природе строят китов, и рассеивают зёрна самовоспроизводящихся машин, и организуют атомы в огромные структуры целлюлозы, выстраивая такого гиганта, как калифорнийское мамонтовое дерево. Нет ничего удивительного в выращивании ракетного двигателя в специально подготовленном чане. Действительно, лесники, если им дать подходящие «семена» ассемблеров, могли бы выращивать космические корабли из земли, воздуха и солнечного света.
Ассемблеры будет способен делать практически всё что угодно из обычных материалов без использования человеческого труда, заменяя дымящие фабрики системами, чистыми как лес. Они в корне преобразуют технологию и экономику, открывая новый мир возможностей.
Глава 5. ДУМАЮЩИЕ МАШИНЫ
Мир стоит на пороге второго компьютерного века. Новая технология, выходящая сейчас из лаборатории, начинает превращать компьютер из фантастически быстрой вычислительной машины в устройство, которое подражает человеческому процессу мышления, давая машинам способность рассуждать, производить суждения, и даже учиться. Уже этот "искусственный интеллект" выполняет задачи, которые когда-то думали, что под силу только человеческому интеллекту…
Машинный интеллект
Цель Тьюринга
Проектирующие машины
Гонка искусственного интеллекта
Достаточно ли мы умные?
Ускорение гонки технологий
КОМПЬЮТЕРЫ появились из глубин лабораторий, чтобы помочь писать, считать и играть дома и в офисе. Эти машины выполняют простые, повторяющиеся задачи, но машины, которые пока еще в лабораториях, делают намного больше. Исследователи искусственного интеллекта говорят, что компьютеры могут быть умными и с этим не соглашается всё меньшее и меньшее количество людей. Чтобы понять наше будущее, мы должны понять, также ли невозможен искусственный интеллект, как полёт на Луну.
Думающие машины не обязаны походить на людей по форме, назначению, или умственным умениям. Действительно, некоторые системы искусственного интеллекта покажут немного черт умного дипломированного специалиста-гуманитария, но зато будут служить только как мощные машины для проектирования. Тем не менее понимание как человеческий разум эволюционировал из бессознательной материи прольёт свет на то, как можно заставить машины думать. Разум, подобно другим формам порядка, эволюционировал путём вариации и отбора.
Разум действует. Не нужно изучить скиннеровский бихевиоризм, чтобы понять важность поведения, включая внутреннее поведение, называемое мышлением. РНК, копирующееся в испытательных пробирках, показывает, как идея цели может применяться (как своего рода стенография) к молекулам, совершенно не имеющим разума. У них нет нервов и мускулов, но они развились, чтобы "вести себя" так, как это способствует их воспроизводству. Вариация и селекция сформировали простое поведение каждой молекулы, которое остается постоянным на протяжении всей её "жизни".
Отдельные молекулы РНК не приспосабливаются, но бактерии это делают. Конкуренция выделили бактерии, которые приспосабливаются к изменениям например, подстраивая свой набор пищеварительных ферментов под имеющуюся в наличии пищу. Однако сами эти механизмы адаптации постоянны: молекулы пищи переключают генетические переключатели также как холодный воздух переключает термостат.
Некоторые бактерии также используют примитивную форму управления поведением по методу проб и ошибок. Бактерии этого вида имеют тенденцию плавать по прямым линиям, и имеют ровно столько «памяти», чтобы знать, улучшаются ли окружающие условия или ухудшаются по направлению их движения. Если они ощущают, что условия улучшаются, они продолжают двигаться вперёд. Если они чувствуют, что условия становятся хуже, они останавливаются, переворачиваются и направляются в случайном, обычно ином, направлении. Они исследуют направления, и отдают предпочтение хорошим, отвергая плохие. И поскольку это заставляет их мигрировать в направлении больших концентраций молекул пищи, они выжили.
У плоских червей нет мозга, однако они показывают способность к настоящему обучению. Они могут учиться выбрать правильную дорожку в простом T-образном лабиринте. Они пробуют повернуть налево и направо, и постепенно выбирают поведение или формируют привычку, которая даёт лучший результат. Однако это выбор поведения по его последствиям, что психологи-бихевиористы называют "законом последствий". Эволюционирующие гены вида червя произвели отдельных червей с эволюционирующим поведением.