Добавить в цитаты Настройки чтения

Страница 95 из 214

Количество газообразных продуктов, получающихся в результате сгорания 1 г пиротехнического состава, принято выражать не по массе, а по объему, занимаемому ими при нормальных условиях. Этот объем газообразных продуктов называется удельным объемом и обозначается через V0. Обычно, при вычислениях к объему занимаемому образующимися при реакции газами, добавляется также объем, занимаемый при нормальных условиях образующимися в процессе реакции парами воды (если она выделяется при реакции или содержится в исходных веществах в виде кристаллогидратов).

Объем Vt газообразных продуктов при температуре реакции горения вычисляют по формуле Vt = V0(1 + 0,00366t), где t — температура реакции горения состава, V0 — удельный объем.

В таблице 10 указан объем, занимаемый при нормальных условиях 1 граммом газов преимущественно выделяющихся при реакциях горения.

Таблица 10. Удельный объем некоторых газов при нормальных условиях

Газ ∙ Объем [см3/г]

H2 ∙ 11200

Н2O ∙ 1247

СО ∙ 800

СO2 ∙ 509

N2 ∙ 800

SO2 ∙ 350

НСl ∙ 614

Cl2 ∙ 315

Как видно из таблицы 10, при равной массе наибольший объем в газообразном состоянии занимает водород, а затем пары воды, азот и окись углерода.

Из этого можно сделать вывод, что для получения большего объема газов следует в качестве горючих компонентов пользоваться органическими веществами, содержащими много связанного водорода, а количество окислителя рассчитывать таким образом, чтобы сгорание горючего происходило только до Н2O и СО или, если это диктуется желанием получить больше тепла, до Н2O и СO2.

Удельный объем газообразных продуктов реакции определяют по формуле:

V0 = 22,4∙n∙1000/m

где n — число молей газообразных продуктов реакции (сумма коэффициентов при газообразных веществах в правой части уравнения реакции), m — масса реагирующего состава в граммах, 22,4 — число Авогадро.

Пример: рассчитать V0 для имитационного состава состоящего из хлората калия, алюминия и углерода, задавшись целью получить состав с возможно большим газовыделением и значительной теплотой горения.

Конструирование состава: зная, что наибольший объем газа в заданной смеси может дать окись углерода, запишем формулу так, чтобы входящий в состав углерод окислился только до окиси углерода:

2КСlO3 + 2Аl + 3С = Аl2O3 + 3СО + 2КСl

Откуда:

V0= (22,4∙(3 + 2)∙1000)/(2∙123 + 2∙27 + 3∙12) = 333 см3/г

Вычислив рецепт состава согласно заданной формуле получим:

73 % — КСlO3; 16 % — Аl; 11 % — С.

Естественно, что при охлаждении газов до нормальной температуры реальное значение вычисленного удельного объема будет ниже, чем расчетное, так как произойдет конденсация паров хлорида калия.

Задавшись эмпирическим значением температуры горения данного состава равным 2500 °C, можно осуществить прикидочный расчет объема газов при температуре горения. Vt = 333∙(1 + 0,00366∙2500) = 3380 см3/г. Можно предположить наличие взрывчатых свойств у приведенного состава, учитывая значительный объем газов, выделяющихся в результате горения при данной температуре.

В таблице 11* приведены значения V0.





Следует отметить, что удельный объем газообразных продуктов для применяемых пиротехнических составов (кроме твердых коллоидных и смесевых ракетных топлив) значительно меньше, чем для основных взрывчатых веществ. Так V0 для гексогена и октогена составляет 908 см3/г, для тетрила 750 см3/г, для тротила 690 см3/г, для смеси НТА (94 %) с дизельным топливом (6 %) примерно 890 см3/г.

ТЕМПЕРАТУРА ГОРЕНИЯ ПИРОТЕХНИЧЕСКИХ СОСТАВОВ

Температуру горения пиротехнических составов определяют по формуле:

t = (Q — Σ(Qs + Qk))/ΣСр где Q — количество теплоты, выделяющееся при горении состава,

ΣСр — сумма теплоемкостей продуктов реакции [кал/град],

Σ(Qs + Qk) — сумма скрытых теплот плавления и кипения продуктов горения [ккал].

Искомая температура горения является верхним пределом, так как формула не учитывает потери тепла на излучение и термическую диссоциацию продуктов горения.

Удовлетворительно формула работает только, если искомая температура не превышает 2000…2500 °C, что недостаточно для большинства пиротехнических составов.

Определение реальной температуры горения расчетным путем достаточно сложная задача, так как приходится принимать множество допущений. Ричардс и Комтон установили, что для большинства простых веществ справедливо соотношение:

Qs/Ts = 0,002…0,003

где Qs — теплота плавления [ккал/г∙атом],

Ts — температура плавления [°К].

Однако, эта зависимость достаточно точна не для всех простых веществ.

Скрытая теплота плавления также может быть вычислена по эмпирической формуле А. А. Шидловского:

Qs/Ts = 0,002n где n — число атомов в молекуле соединения.

Скрытая теплота испарения вещества не является неизменной, а, как правило, уменьшается с повышением температуры, при которой происходит испарение.

Зависимость между теплотой кипения QR [ккал/моль] и температурой кипения жидкости при 760 мм. рт. ст. TR [°К] выражается формулой Трутона:

Qr/Tr = 0,02n или по эмпирической формуле Шидловского:

Qr/Tr = 0,011n где n — число атомов в соединении

Относительно теплоемкости жидких веществ при температурах выше 1000 °C указать определенные закономерности затруднительно, известно, что теплоемкость жидкого вещества больше его теплоемкости в твердом состоянии.

Для простых твердых веществ при температурах выше 1000 °C можно считать, согласно Дюлонгу и Пти, что их грамм-атомная теплоемкость есть величина постоянная и равна приблизительно 6,4 кал/°С.

Для соединений в жидком состоянии при высокой температуре, в известной мере, справедливо экспериментальное правило Неймана-Коппа, согласно которому теплоемкость такого соединения равняется сумме атомных теплоемкостей составляющих его элементов.

Из сказанного ясно, что точное определение температуры горения расчетным путем достаточно проблематично и, в большинстве случаев, не имеет смысла, так как, во-первых, более надежно эта температура определяется экспериментально, а, во-вторых, может быть прикинута пиротехником на основании уже известной температуры горения исследованных составов.

Для ракетных топлив, естественно, требуется высокая точность расчета температуры горения и других характеристик продуктов горения, в этом случае выполняются компьютерные расчеты, при которых учитываются процессы диссоциации и испарения продуктов горения. Однако, поскольку основной характеристикой ракетных топлив является величина удельной тяги, точно измеряемой экспериментально, такие расчеты интересны только как метод теоретического анализа новых топлив.

В таблице 12 приведены температуры горения составов основных специальных эффектов горения.

Таблица 12. Назначение составов и максимальная температура в пламени

Составы ∙ Максимальная температура в пламени [°С]