Добавить в цитаты Настройки чтения

Страница 147 из 176

Поскольку то в магнитном поле вблизи канала молнии могут удерживаться и накапливаться даже релятивистские электроны. С другой стороны, при токах более 1000 А в импульсных вакуумных разрядах энергия электронов достигает 1 кэВ, а скорости движения электронов до 107 м/с [6]. В качестве верхнего значения тока в плазме следует по-видимому использовать величину 1.4 106 А согласно [7], так как дальнейшее увеличение напряжённости электрического поля приводит к сжатию токового шнура и увеличению излучения при неизменном токе и температуре частиц.

Обозначим через M, V, R и m, v, r массы, скорости движения и радиусы вращения ионов и электронов соответственно; В — индукция магнитного поля; Ni — количество нескомпенсированных положительных ионов внутри ШМ; Ne — количество свободных электронов во внешней оболочке ШМ; q — элементарный электрический заряд; i — ток электронов на орбите радиуса r; s, s0 — относительная диэлектрическая постоянная и электрическая постоянная; μ, μ0 — относительная магнитная проницаемость среды и магнитная постоянная. Для упрощения расчётов будем считать, что заряды и токи в основном сконцентрированы вблизи экваториальной плоскости либо расположены наподобие цилиндра, а ионы однозарядны.

Условие равновесия для электронов, движущихся во внешней оболочке, связывает центростремительную и электрические силы:

mv2/r = (Niq2/4πεε0r2) — (Neq2/4πεε0r2). (1)

Первое выражение в правой части (1) описывает силу притяжения между электроном и объемным внутренним ионным зарядом, второе — силу отталкивания электронов во внешней оболочке друг от друга. Баланс сил (1) будет выполняться в том случае, когда общее число нескомпенсированных положительных зарядов Ni будет незначительно превышать число свободных электронов во внешней оболочке Ne. Следовательно, ШМ в целом должна быть заряжена положительно, имея заряд Q = q(Ni — Ne). С другой стороны, общий заряд ШМ не может превышать такой величины, при которой напряжённость электрического поля на её поверхности превышает Е0 = 30 кВ/см во избежание пробоя атмосферного воздуха. Отсюда находим максимальный заряд ШМ:

Q0 = 4πεε0Е0r2. (2)

Наличие большой напряжённости электрического поля возле ШМ и энергичных электронов подтверждается многочисленными наблюдениями их шипения, потрескивания и испускания искр как при электрическом разряде. Кроме этого, в ряде случаев были взяты пробы воздуха после прохождения ШМ, показавшие повышенное содержание озона и окислов азота. По данным из [8], требуемое соотношение концентраций озона и окислов азота можно получить при электрическом разряде в воздухе с напряжённостью поля до 4 кВ/см.

Выражая заряд Q из (1) и приравнивая к (2), получаем:

v2/r = qE0/m. (3)

В правой части (3) находятся постоянные величины. Принимая, что максимально возможная скорость электронов v равна скорости света с, находим наибольший радиус ШМ с предельной величиной электрического заряда:

r = 17 см, Q = Q0 = 9.6∙10-6 Кл (4) при условии v ~= с.

Предположим, что электронный ток во внешней оболочке ШМ настолько большой, что магнитное давление Рm сравнивается по величине с атмосферным давлением Ра

Pa = Pm = B2/2μμ0, где B = μμ0i/2πr. (5)

Из (5) с учётом (4) находим предельные величины индукции магнитного поля, тока и числа электронов во внешней оболочке ШМ:

В = 0.5 Тл, i = 1.4∙105 А, Ne = 3.1∙1015. (6)

Скорость ионов V внутри ШМ можно оценить по средней температуре свечения Т с помощью соотношения между кинетической и тепловой энергиями:

MV2/2 = 3kT/2

Примем согласно [8] в качестве температуры ШМ величину Т = 1,4∙104 К, тогда при средней массе иона М = 4,7∙10-26 кг как у молекулы азота скорость ионов будет равна V = 3,5∙103 м/с. Радиус вращения ионов в магнитном поле найдём из выражения:





MV2/R = qVB,

так что с учётом (6) ионы вращаются по окружностям радиуса R = 2 мм в плоскости, перпендикулярной магнитному полю. С другой стороны, заряженные частицы беспрепятственно могут двигаться вдоль линий магнитного поля. Следовательно, в модели ШМ с магнитным полем заряженные частицы двигаются по винтовым линиям и периодически отражаются от наружной электронной оболочки.

Кинетическая энергия электронов во внешней оболочке ШМ будет равна:

Ek = Nemv2/2 = 0.13 кДж. (7)

Умножая объём ШМ Vb = 4πr3/3 = 0.02 м3 на плотность магнитной энергии, оценим энергию магнитного поля:

Em = VbB2/2μμ0 =πμμ0ri2/6 = 2 кДж. (8)

Электростатическая энергия ШМ вычисляется как интеграл от плотности энергии электрического поля и по объёму:

Е — напряжённость электрического поля. За пределами ШМ напряжённость поля Е мала из-за частичной компенсации положительного ионного заряда и отрицательного заряда от электронов во внешней оболочке. В самой электронной оболочке поле достаточно большое, но объём оболочки существенно зависит от её толщины; при малой толщине энергия в оболочке может быть невелика. Энергия поля внутри ШМ рассчитывается точно, при равномерном распределении положительных зарядов по объёму с их общим зарядом qNi энергия шара равна:

W+ = q2Ni2/40πεε0r = 1.3 кДж, (9)

Здесь принято Ni|Ne = 3.1∙1015 согласно (6). Полная электростатическая энергия ШМ будет ещё больше, чем величина (9).

По данным из [8], плотность энергии плазмы в ШМ при температуре Т = 1,4 104 К составляет 0,35 Дж/см3. Умножая эту плотность на объём нашей модели ШМ при её радиусе 17 см, находим максимально возможную энергию плазмы, включая кинетическую энергию частиц:

Еi = 7.2 кДж. (10)

Таким образом основная энергия в нашей мощной ШМ согласно (7) — (10) заключена в энергии ионизованных частиц и в энергии электромагнитного поля, причём суммарная энергия величиной 10.6 кДж попадает в диапазон верхних значений энергий у ШМ, вычисляемых по результатам их воздействия на окружающие предметы.

Любопытной особенностью ШМ является то, что её полная энергия положительна, а сама ШМ при этом относительна стабильна. Другой противоположностью являются гравитационно-связанные тела, стабильность которых сопровождается отрицательностью их полной энергии. В обоих случаях полная энергия растёт по модулю при уменьшении объёма объекта при неизменном количестве частиц. В ШМ как в плазменном объекте дополнительное внешнее давление приводит к увеличению токов и магнитного поля (это характерное свойство плазмы), а при уменьшении объёма вырастет и электростатическая энергия.

Благодаря своему заряду (4) ШМ может двигаться под влиянием электрических полей. Как отмечается в [3], ШМ иногда выпадают из облаков и быстро направляются к земле, ударяются об неё и взрываются. Часто это движение происходит вдоль канала только что возникшей линейной молнии. На тесную связь между местами появления ШМ и ударов линейных молний указывает и то, что в некоторых случаях ШМ образуется от одной линейной молнии и уничтожается другой линейной молнией. ШМ, возникшие вблизи земли, обычно двигаются медленно и могут останавливаться у некоторых предметов, перемещаться против ветра или даже подниматься в облака. Эти особенности поведения ШМ вполне могут быть объяснены действием на неё сильных электрических полей между облаками и выступающими предметами на земле, периодически колеблющимися при разрядах линейных молний и движении облаков вплоть до изменения направления напряжённости поля. Известно, что разность потенциалов между облаками и землёй может достигать величины вплоть до 108 В, что при высоте облака над землёй в 1 км даёт напряжённость поля 105 В/м вместо тех 100 В/м, которые наблюдаются при ясной погоде. Кроме этого, вследствие высокой температуры воздуха внутри ШМ её средняя плотность отличается от плотности окружающего воздуха, так что к электрическим силам нужно добавить подъёмную силу Архимеда. Баланс указанных сил осуществляется, по-видимому, у привязанных или прикреплённых ШМ, либо парящих неподвижно, либо связанных с предметами. В течение жизни ШМ её заряд может изменяться из-за взаимодействия с окружением или при частичном распаде, приводя к изменению равновесного состояния. Так, при переходе от прикреплённой ШМ к свободной она обычно взмывает вверх, а затем по наклонной линии уходит к облакам.