Добавить в цитаты Настройки чтения

Страница 12 из 180

(а) — 180 млн. лет назад, (б) — 135 млн. лет назад, (в) — 65 млн. лет назад, (г) — современное.

Прежде всего — что такое конвекция вообще? Вот мы поставили на плиту чайник; через некоторое время придонный слой воды нагревается от конфорки. Поскольку любое вещество при нагреве расширяется, эта "придонная вода" начинает занимать, при том же весе, несколько больший объем, а потому "всплывает" на поверхность — в соответствии с законом Архимеда. Холодные и, соответственно, "тяжелые" поверхностные слои "тонут", занимая место всплывших у источника тепла; так образуется круговорот, называемый конвекционным током, который будет работать до тех пор, пока вся вода в сосуде не прогреется до одинаковой температуры.

Тот тип конвекционного процесса, который мы только что описали, называют тепловой конвекцией; сам Холл предполагал, что в мантии имеет место именно он, однако в последнее время геофизики отводят главную роль не тепловой, а фазовой конвекции. Дело в том, что существуют и другие (помимо нагрева) способы создать в среде архимедовы силы плавучести, которые породят конвекционный ток. Вспомним описанный в Главе 2 процесс гравитационной дифференциации недр. Внутренние слои мантии, потерявшие при контакте с поверхностью ядра часть "ядерного" (богатого железом) вещества, обладают пониженной плотностью и положительной плавучестью; внешние слои мантии, напротив, уплотнились в результате выплавки из них "легкого", силикатного, вещества земной коры и обладают отрицательной плавучестью. Под действием этих архимедовых сил плавучести в мантии и развиваются крайне медленные (порядка нескольких сантиметров в год) конвекционные токи.

Объем вещества, охваченный конвекционным током, называют конвективной ячейкой; весь объем греющегося чайника представляет собой единую ячейку, однако если мы станем нагревать широкий таз двумя удаленными друг от друга горелками, то у нас возникнут две относительно независимые системы циркуляции воды, взаимодействующие между собой. Ячейки бывают двух типов — открытые и закрытые. По краям открытых ячеек происходит подъем, а в центре — опускание вещества, то есть в поверхностном слое вещество движется от краев к центру, а в придонном — от центра к краям; в закрытых ячейках, соответственно, все наоборот (рисунок 11).

РИСУНОК 11. Возникновение конвективной ячейки в нагреваемой жидкости; стрелками указано направление токов (справа — вид сбоку, слева — вид сверху).

(а) — ячейка открытого типа, (б) — ячейка закрытого типа, (в) — двуячеистая конвекция — две ячейки открытого типа.

Литосферные плиты с "впаянными" в них континентами оказываются вовлеченными в движение вещества мантии в поверхностном слое конвективных ячеек, и перемещаются вместе с ним (мантийным веществом) от областей его подъема к областям опускания (в кастрюле с кипящим молоком — ячейке закрытого типа — пенка собирается у стенок). В толстостенной сферической оболочке (каковой является мантия планеты) лишь две схемы организации конвекционного процесса могут быть относительно устойчивы. Одной — более простой — будет единственная ячейка, охватывающая собою всю мантию, с одним полюсом подъема вещества и одним же полюсом его опускания. В этом случае континенты собираются воедино вокруг полюса опускания, освобождая вокруг полюса подъема "пустое" — океанское — полушарие; такая ситуация существовала, например, во времена Пангеи.

Другая — более сложная — схема действует в наши дни. Это пара открытых ячеек типа "лоскутов теннисного мяча" — очень точное и наглядное определение. Теннисный мяч состоит из двух половинок, соединенных между собой так, что соединяющий их шов волнообразно изогнут относительно экватора двумя гребнями и двумя ложбинами; лоскуты теннисного мяча (в отличие от детского резинового) вытянуты, и их продольные оси взаимно перпендикулярны (см. рисунок 12). Зону подъема вещества, являющуюся одновременно и границей между этими ячейками открытого типа — тот самый волнообразно изогнутый "шов" — и составляет глобальная система срединно-океанических хребтов. Зонами же опускания при такой схеме являются продольные оси ячеек (более или менее перпендикулярные друг другу), вдоль которых должны выстраиваться две цепочки материков. Примерно такая картина и наблюдается на Земле в настоящее время: одну группу материков образуют Африка, Евразия и Австралия, другую — Северная и Южная Америка и Антарктида. (Заметим, что в принципе возможна и такая двухъячеистая конвекция, когда граница между ячейками полностью совпадает с экватором планеты, однако это будет просто частный случай крайне малого искривления "шва".)





РИСУНОК 12.

(а) — теннисный мяч, состоящий из двух лоскутов;

(б) — схема поверхности планеты, имеющей две конвективные ячейки: "шов" — линия подъема мантийного вещества (срединно океанические хребты), материки выстраиваются вдоль линии опускания мантийного вещества (оси каждого из лоскутов);

(в) — поверхность современной Земли (заштрихован американо-антарктический "лоскут").

При одноячеистой конвекции положение полюсов подъема и опускания вещества всегда будет несколько отличаться от идеального (точно по диаметру планеты); там, где соединяющие их "меридианы" будут самыми длинными, образуется застойная область, в которой вещество не теряет железа и потому постепенно оказывается тяжелее окружающей его среды. Через некоторое время оно "проваливается" вглубь мантии, создавая второй полюс опускания, и превращая конвекцию в двухъячеистую. Двухъячеистая конвекция постепенно ослабляется и затем переходит в одноячеистую (одна из ячеек как бы "съедает" вторую), и конвекционный цикл начинается заново. Таким образом, взаиморасположение континентов определяется фазой конвекционного цикла в мантии — и наоборот: фаза конвекционного цикла, имевшая место в некую геологическую эпоху, может быть определена исходя из взаиморасположения континентов, реконструированного палеомагнитными, палеоклиматологическими и др. методами. Понятно, что все эти изменения весьма существенно влияют на климат соответствующей эпохи, а через него — на функционирование ее биосферы.

4. Происхождение жизни: абиогенез и панспермия. Гиперцикл. Геохимический подход к проблеме.

Завершив раздел, посвященный эволюции самой Земли, мы приступаем теперь к изучению эволюции жизни на ней. Сразу оговорюсь: я не собираюсь здесь ни углубляться в дебри определений того, что такое "жизнь", ни обсуждать чисто химические аспекты этого явления — это увело бы нас слишком далеко от темы спецкурса[7]. Наш подход к проблеме жизни на Земле будет сугубо функциональным, и в его рамках нам следует принять одно аксиоматическое утверждение: эволюция биосферы и составляющих ее экосистем идет в целом в сторону возникновения все более совершенных, т. е. устойчивых и экономных, круговоротов вещества и энергии. Совершенствование циклов направлено на то, чтобы минимизировать безвозвратные потери биологических систем: экосистема стремится препятствовать вымыванию микроэлементов и захоронению неокисленного углерода, переводить воду из поверхностного стока в подземный, и т. д. Поэтому с общепланетарной точки зрения жизнь следует рассматривать как способ стабилизации существующих на планете геохимических циклов.