Добавить в цитаты Настройки чтения

Страница 81 из 436



Писатель-фантаст, знакомый с методами РТВ, обычно снисходительно улыбается, когда слышит от своего коллеги: "Я полгода перебирал фантастические идеи, пока не нащупал новую". Знаток РТВ умеет придумывать отличные идеи, не перебирая огромную груду нелепых — он действует по системе, основы которой нам уже известны.

А большинство ученых пока еще действительно считает, что классический метод проб и ошибок — единственно возможный способ совершения научных открытий. Не так давно мне довелось прочитать восторженную статью известного ученого — гимн методу проб и ошибок, провозглашение этого метода вечным и незыблемым. Все равно, как если бы ямщик превозносил неоспоримые преимущества конного транспорта в то время, когда по улицам бегает первый, пусть и весьма несовершенный автомобиль…

Между тем разве, к примеру, диверсионный метод решения исследовательских задач, о котором шла речь неделю назад, не избавляет ученого от нудной необходимости случайно перебирать разные варианты в поисках нужного? Есть и другие методы. И есть общее правило, действующее в науке не хуже, чем в технике: научные системы развиваются по своим объективным законам, и лишь познав эти законы, научившись ими пользоваться, ученый навсегда забудет о том, что когда-то для того, чтобы сделать открытие, ему приходилось наугад перебирать простые зерна — факты в поисках жемчужного зерна — открытия.

Несколько лет назад изобретатели Б.Злотин и А.Зусман предложили простую схему, показывающую, как именно современная наука избавляется от вечной, казалось бы, необходимости перебирать варианты.

Вот как идет развитие:

Этап первый, длившийся долгие столетия: ученый наугад совершает "пробы и ошибки", при этом, даже не запоминая, какая именно проба была ошибочной, и поэтому повторяя те же ошибки вновь и вновь. Разве алхимики средневековья в поисках "философского камня" не перебирали по сто раз одни и те же элементы и не проводили одни и те же опыты? Это все равно, что пытаться открыть запертую дверь, доставая ключи из огромной коробки, а неподошедшие ключи бросая обратно в ту же коробку — чтобы через какое-то время вытащить опять тот же ключ и совершить ту же ошибку…

Но наступает в развитии науки второй этап. Поиск нового ведется, конечно, все тем же методом проб и ошибок, но теперь ошибки запоминаются и не повторяются вновь. Этот переход произошел тогда, когда получили распространение научные журналы, а результаты опытов и исследований стали доступны всем ученым во всех странах. Продолжая аналогию, можно сказать, что теперь, достав ключ из ящика и не сумев отпереть этим ключом дверь, вы больше не бросаете ключ обратно в ящик, но откладываете в сторону, чтобы никогда больше не использовать.

Но ведь и второй этап достаточно неэффективен — слишком много проб приходится совершать "в натуре". Третий этап в развитии науки: переход от реальных проб и ошибок к мысленным экспериментам. Действительно, так ли уж нужно достать ключ из коробки, засунуть его в замочную скважину, попробовать повернуть?. Может, достаточно взглянуть на ключ, изучить его форму, и сразу станет ясно, что этот ключ и пробовать не стоит? В развитии науки этот этап соответствовал переходу к созданию математических моделей тех или иных событий.

Ясно, что этот этап не мог наступить прежде, чем позволило развитие математических методов. Начался этот переход в прошлом веке, а окончательно закрепился в наше время — с развитием кибернетики.

И наступило время для четвертого этапа — эвристического. Не нужны реальные пробы и ошибки, не нужны даже математические модели — ученые (я имею в виду пока лишь самых выдающихся из них) могут сразу, лишь поняв задачу, представить в уме правильное решение, проделав в уме тот путь, для преодоления которого иным ученым прошлого нужны были годы труда и сотни экспериментов.





Таким был, к примеру, академик Я.Б.Зельдович: он ставил перед коллегами задачу и говорил, каким окажется решение. Коллеги изучали литературу, проводили вычисления, спорили на семинарах и в результате… полученное решение совпадало с тем, что "угадывал" Я.Б.Зельдович.

Угадывал? Нет, конечно, это были не простые догадки. Это было интуитивное использование закономерностей развития научных систем.

НАУКА БЕЗ ИНТУИЦИИ

Академик Я.Б.Зельдович умел предсказывать решение сложной проблемы, и это умение многим его коллегам представлялось тайной, загадочным свойством интуиции. А между тем уже в те годы, четверть века назад, кибернетики работали над созданием систем, которые обладали бы именно такой способностью — без проб, без ошибок, без обычного и естественного для науки перебора вариантов, давать ответы на сложные научные загадки, находить решения сложных проблем. Область кибернетики, которая стала заниматься подобным поиском, была названа эвристикой. От слова "эврика", с которым Архимед когда-то вылез из ванны и бежал по людным улицам Афин. От слова "эврика", ставшего синонимом неожиданного озарения, казалось бы, не подкрепленного никакими экспериментами, пробами и уж, тем более, ошибками. Между тем в эвристике нет ничего загадочного — она использует в науке те же, по сути, методы создания идей, какие ТРИЗ использует в технике. Эвристика нащупывает закономерности развития научных систем и тем самым позволяет науке перейти к пятому этапу развития. О четырех этапах шла речь неделю назад: от простого перебора вариантов до интуитивного поиска решения.

Пятый этап: осознанное использование закономерностей развития научных систем для поиска решения самых сложных проблем. Рассказывая о первых четырех этапах развития науки, я привел в качестве аналогии человека, который пытается открыть замок с помощью множества ключей, хранящихся в большой коробке. Сначала он достает ключ, пробует и, не открыв дверь, бросает ключ назад в коробку (первый этап). Потом он приучается откладывать не подошедший ключ в сторону (второй этап). Затем он понимает, что есть ключи, которые и пробовать не стоит (третий этап). После этого он учится заранее представлять себе ключ, который подошел бы к этой двери, и достает из коробки именно такой ключ (четвертый этап, который называется эвристическим).

На пятом этапе человеку не приходится ни о чем догадываться и эксплуатировать свою интуицию. Он знает законы развития научных систем и знает, с помощью какого закона можно решить проблему. Продолжая аналогию, можно сказать: нужно открыть дверь, причем все ключи в ящике пронумерованы, на каждом написано, к какой двери он подходит, и вам нужно лишь достать нужный ключ. Никаких пустых проб, никаких ошибок…

Казалось бы, если наука развивается именно таким образом, если скоро (через 10 лет или через 100?) ученому, чтобы сделать открытие, нужно будет использовать метод, который будет ему известен заранее, если все будет именно так, не станет ли ученому просто скучно заниматься наукой? Не исчезнет ли из науки самое главное — творчество? Над чем голову ломать, если путь известен?

Так, собственно, когда-то говорили скептики, осуждая появление ТРИЗ. Не приведет ли использование теории решения изобретательских задач, говорили они, к тому, что инженеру вообще не нужно будет думать? Действуешь строго по методике, и все дела. В конце концов, изобретения будет делать машина, для человека не останется интеллектуальной работы. А это нехорошо. И значит, ТРИЗ вредна.

ТРИЗ выжила, конечно, и для изобретателя-тризовца жизнь стала даже более интересной, потому что задачи, которые ему приходится решать теперь, куда более сложны, чем прежние, основанные на простом переборе вариантов. Выживет и эвристика со всеми дополнениями, пришедшими из ТРИЗ. Ведь ясно: научившись "щелкать" одни научные проблемы, мы столкнемся с куда более сложными. Не меньше придется ученому ломать голову, а больше — таков парадокс развития и в изобретательстве, и в науке.