Добавить в цитаты Настройки чтения

Страница 291 из 436



Уолт Кестер, Джеймс Брайант, Майк Бирн

Современные системы обработки данных обычно содержат в себе устройства со смешанными сигналами (mixed-signal devices), такие как аналого-цифровые преобразователи (АЦП), цифро-аналоговые преобразователи (ЦАП), а также быстродействующие цифровые сигнальные процессоры (DSP). Обработка аналоговых сигналов требует большого динамического диапазона, поэтому возрастает роль высокопроизводительных ЦАП и АЦП. Обеспечение широкого динамического диапазона с низкими шумами во враждебном цифровом окружении возможно только при использовании эффективных приемов проектирования высокоскоростных схем, включающих в себя технически грамотную трассировку сигнала, развязку и заземление.

В прошлом "высокоточные низкоскоростные" схемы обычно рассматривались отдельно от так называемых "высокоскоростных" схем. В том, что касается АЦП и ЦАП, частота отсчетов (или обновления на выходе) обычно рассматривалась как критерий скорости работы схемы. Однако следующие два примера показывают, что на практике большинство современных ИС обработки сигналов являются "высокоскоростными" и поэтому должны рассматриваться как таковые для достижения хороших результатов. Это касается цифровых сигнальных процессоров (DSP), АЦП и ЦАП.

Все АЦП выборки (АЦП со схемой выборки-запоминания), используемые в системах обработки сигналов, работают с достаточно высокоскоростными генераторами тактовых импульсов с малым временем нарастания и спада (обычно несколько наносекунд) и должны рассматриваться как высокоскоростные устройства, даже если их производительность (частота отсчетов) представляется невысокой. Например, 12-разрядный АЦП последовательного приближения (SAR) типа AD7892 работает при внутренней тактовой частоте 8 МГц, тогда как его частота отсчетов составляет только 600 кГц.

Для сигма-дельта (Σ-Δ) АЦП также требуется высокочастотный тактовый генератор, т. к. такие АЦП имеют высокий коэффициент передискретизации. 16-разрядный АЦП AD7722 имеет частоту обновления на выходе (эффективную частоту отсчетов), равную 195 кГц, но в действительности производит выборку с частотой 12.5 МГц (в 64 раза выше). Даже так называемые низкочастотные сигма-дельта (Σ-Δ) АЦП промышленного назначения с высоким разрешением (имеющие частоту обновления на выходе от 10 Гц до 7.5 кГц) работают при тактовой частоте 5 МГц или выше и обеспечивают 24-разрядное разрешение (например, микросхемы фирмы Analog Devices типа AD7730 и AD7731).

Еще более осложняет вопрос то, что ИС со смешанными сигналами содержит как аналоговую, так и цифровую части, и поэтому многие возникающие проблемы связаны с неправильным заземлением. К тому же некоторые ИС со смешанными сигналами имеют относительно низкие цифровые токи, в то время как у других они велики. Во многих случаях с точки зрения оптимального заземления эти два варианта должны рассматриваться отдельно.

Проектировщики цифровых и аналоговых устройств склонны рассматривать устройства со смешанными сигналами с различных позиций, и цель этой главы — разработать общую философию заземления, которая будет работать в большинстве устройств со смешанными сигналами, без необходимости изучения специфических деталей их внутреннего устройства.

Поверхности заземления и питания

Обеспечение низкоимпедансных заземляющих поверхностей большой площади очень важно для всех современных аналоговых схем. Заземляющая поверхность действует не только как низкоимпедансный обратный тракт для развязки высокочастотных токов (вызванных работой скоростных цифровых схем), но также минимизирует электромагнитные радиочастотные (EMI/RFI) помехи. Благодаря экранирующему действию заземляющей поверхности чувствительность устройства ко внешним помехам также уменьшается.

Заземляющие поверхности также позволяют передавать высокоскоростные цифровые и аналоговые сигналы с использованием технологий линий передач (полосковую или микрополосковую), там, где требуется получить определенное характеристическое сопротивление линии.





Использование шины-проводника в качестве заземления категорически неприемлемо из-за ее импеданса на частоте, соответствующей скорости переключения большинства логических схем. Например провод калибра 22 стандарта AWG (American Wire Gauge), что соответствует диаметру 0,64 мм, обладает индуктивностью около 20 нГн/дюйм. Проходящий по этому проводу ток, вызванный логическим сигналом и имеющий скорость нарастания 10 мА/нс, будет создавать импульс напряжения величиной в 200 мВ на 1 дюйм провода:

Δv = L∙(Δit) = 20 nH x 10 mA/ns = 200 mV

Для сигналов, имеющих размах 2 В, это означает ошибку около 200 мВ или 10 % (точность приблизительно 3.5 разряда). Даже в полностью цифровых схемах эта ошибка будет означать значительное уменьшение запаса помехоустойчивости.

Рис. 10.13 иллюстрирует ситуацию, когда цифровой ток, возвращающийся по шине "земли", модулирует аналоговый возвратный ток (верхний рисунок).

Индуктивность и сопротивление провода, по которому течет обратный ток, являются общими для аналоговой и цифровой схем, это и является причиной взаимодействия и приводит к помехам. Одно из возможных решений — заставить обратный ток идти прямо к общей точке GND REF, как показано на нижнем рисунке. Это — иллюстрация фундаментальной концепции заземления «звездой» или системы с одной точкой заземления. Реализовать настоящее одноточечное заземление в системе, которая содержит большое количество высокочастотных трактов, сложно, т. к. физическая длина каждого провода, по которому течет обратный ток, будет вносить паразитное сопротивление и индуктивность, которые могут сделать затруднительным обеспечение низкоимпедансного заземления для токов высокой частоты. На практике тракт возвратного тока должен включать в себя заземляющие поверхности большой площади для того, чтобы обеспечить низкое сопротивления для высокочастотных токов. Таким образом, без низкоимпедансной заземляющей поверхности практически невозможно избежать появления общего для аналоговой и цифровой схем тракта заземления, особенно на высоких частотах.

Все выводы заземления микросхем должны соединяться с помощью пайки прямо с низкоимпедансной заземляющей поверхностью с целью минимизировать последовательную индуктивность и сопротивление. Использование традиционных панелек (разъемов) для микросхем в высокоскоростных устройствах не рекомендуется. Добавочная индуктивность и емкость даже «низкопрофильных» панелек может привести к нарушению работы схемы из-за появления дополнительных трактов. Если панельки всё же должны быть использованы с микросхемой в DIP-корпусе, например, при конструировании прототипа, то имеет смысл использовать «панельку-разъем» или наборную панельку из отдельных гнезд. Существуют панельки-разъемы со встроенным развязывающим конденсатором или без него (по каталогу АМР № 5-330808-3 и 5-330808-6). Они имеют позолоченные пружинные контакты, которые обеспечивают хорошее электрическое и механическое соединение с выводами ИС. Однако многократное использование может ухудшить их параметры.

Выводы питания должны быть развязаны прямо на заземляющую поверхность с помощью низкоиндуктивных керамических конденсаторов для поверхностного монтажа (SMD). Если используется конденсатор для обычного монтажа, то его выводы должны иметь длину не более 1 мм. Керамические конденсаторы должны быть расположены как можно ближе к выводам питания микросхемы. Для дополнительной развязки могут также потребоваться ферритовые бусины.

Двусторонняя или многослойная печатная плата