Добавить в цитаты Настройки чтения

Страница 40 из 150

Окись хрома может быть получена прокаливанием бихромата калия с серой.

Эту смесь следует поджигать в большом тигле или лотке малыми порциями во дворе. Остаток прокалить при температуре около семисот градусов и промыть водой.

Прокаливанием бихромата аммония можно получить более мелкозернистую окись хрома, пригодную для чистовой полировки оптических кристаллов.

Поскольку при разложении этой соли все царапающие примеси перейдут в полученный порошок, то её следует перекристаллизовать из горячей воды, профильтровав раствор сквозь чистую вату и дополнительно отстоять мусор, могущий попасть из ваты. Разложение следует вести в раскалённом кварцевом стакане с оплавленными краями, постепенно подсыпая в неё соль.

Газообразные продукты разложения бихромата аммония относительно безвредны. Полученный продукт следует прокалить при температуре слабо-красного каления и промыть методом декантации чистой дистиллированной водой. На всех этапах синтеза следует избегать загрязнения порошка царапающими примесями.

Приготовление эпоксидного лака

Смешав эпоксидную смолу с обычным количеством отвердителя полученную смесь следует тут же смешать с примерно двукратным количеством ацетона. Ацетон должен быть чистым и не содержать большого количества воды. Применять растворители типа этилацетата нельзя, т. к. они реагируют с отвердителем — полиэтилен-полиамином и отверждения смолы не происходит.

Лак твердеет не столь быстро, как смола с отвердителем, но длительное хранение приводит его в негодность. Он пригоден для покрытия дерева и протравленного щёлочью или оксидированного алюминия. После нанесения лак сушат и отверждают при температуре 100°(дерево) или 160°(алюминий) градусов. Лаковая плёнка очень твёрдая и красивая.

Синтез алюмокалиевых или аммониевых квасцов

Алюминиевую стружку растворяют в подогретой серной кислоте. При растворении сплавов, содержащих кремний (силумин) выделяется силан. Он самовоспламеняется на воздухе и может поджечь выделяющийся водород. Это приводит к весьма неприятным взрывам, поэтому реакцию следует проводить во дворе, одев очки. Не следует накрывать чем-либо реакционный сосуд. Полученный сульфат алюминия следует тщательно отфильтровать от нерастворимых примесей и по каплям вливать в концентрированный раствор сульфата калия или аммония, взятый в некотором избытке. Растворы должны быть холодными и иметь небольшой избыток кислоты.

Кристаллизующиеся квасцы могут захватывать из раствора трёхвалентное железо. Для его восстановления до двухвалентного состояния в раствор следует добавить чистый и свежий бисульфит натрия, который квасцов не образует или (лучше) пропускать в раствор медленный ток двуокиси серы.

Окись алюминия, полученную из алюмоаммониевых квасцов, применяют для синтеза оптического рубина для лазеров. Кристаллы квасцов имеют красивую форму и могут служить сувенирами.

Синтез сплавов металлов, воспламеняющихся на воздухе при нагревании

Синтез сплавов щёлочноземельных металлов, лития и магния удобно проводить в открытом железном тигле, помещённом в вертикальную печь. Высоту тигля следует делать около пяти диаметров.

Защиту сплава от воздуха можно осуществить, пропуская в него аргон через плотно вставленную в стенку тигля толстую иглу от шприца. Тигель следует прикрыть крышкой с отверстием для наблюдения. Дополнительную Защиту сплава можно осуществить подходящим флюсом из хлоридов калия и лития, но обычно этого не требуется. Плавку следует вести быстро.





В нагретый и продутый аргоном тигель по кусочкам добавляем промытый от масла чистым бензином и высушенный металл.

Повысив температуру, проводим плавление металлов. Сплав следует перемешать железной проволокой и либо разлить в вакуумируемый кокиль, либо, вынув тигель из печи, поставить на металлическую подставку для быстрого охлаждения.

Эти сплавы обычно крайне хрупки и могут быть выбиты из тигля при его деформации. Сплавы литий-магний и литий-кальций-магний — пластичны. Вопрос о их устойчивости на воздухе проверяется опытным путём. Порошок сплавов может быть пирофорным. Все работы следует производить в очках и вдали от горючих вещей. Заглядывать в тигель с расплавленным металлом лучше всего с помощью небольшого зеркальца.

Глава 12. Получение щёлочных и щёлочноземельных металлов.

Эта проблема может возникнуть в случае невозможности достать их в готовом виде, либо для введения их в объём лампы, что тяжело осуществить для таких активных металлов, как цезий и калий.

Наиболее простым способом их получения является восстановление оксидов с помощью титана или алюминия. (Восстановление алюминием — промышленный способ). Однако, этот способ требует предварительного получения оксидов металлов, что само по себе является достаточно сложной задачей. Работать с крайне гигроскопичными оксидами необходимо в боксе с абсолютно сухим воздухом, что тоже не всегда удобно.

Лучше исходить из бихроматов для калия, рубидия и цезия и хроматов для щёлочноземельных металлов. Они не гигроскопичны, однако содержат балластное вещество — шестивалентную окись хрома, а в ней — избыточный кислород, который, во первых, требует избытка восстановителя, а во вторых, делает реакцию восстановления сильно экзотермической, особенно для щёлочных бихроматов.

Обе проблемы решаются применением в качестве восстановителя избытка гидрида титана (циркония). Гидрид можно получить из отходов (стружки) и достаточно просто (см. синтез гидрида титана). Как восстановитель, этот гидрид выгоден и тем, что титан не образует с щёлочными и щёлочноземельными металлами сплавов. Это позволяет отгонять их (и, соответственно, работать) при более низких температурах. Более выгодными в качестве исходного вещества были бы хроматы Щ.З.М. типа Ва3(СгО4)2, синтез которых описан у Брауэра, но опять же, лишняя стадия синтеза при работе с малыми количествами вещества нежелательна.

Мы опишем получение металлического стронция из его карбоната.

Металлический стронций тяжелее найти, чем барий и, тем более, кальций. В то же время он может понадобится в лабораторной практике. Стронций в виде сплава с 75 % (вес.) магния образует хрупкий, но устойчивый на воздухе сплав, пригодный в качестве геттера (сплавы с большим содержанием стронция на воздухе рассыпаются в пыль). Сплав с 50 % алюминия (проценты везде весовые) в оболочке из титана тоже пригоден как испаряемый геттер и для зарядки катодов ЛПК.

Для определённого контингента лиц мы объясняем, что природный стронций не радиоактивен. Это серебристо-белый металл, который на воздухе быстро корродирует. Твёрдость его немного больше чем у свинца.

Для его получения следует вначале приготовить хромат. Растворив карбонат в азотной кислоте, получим нитрат, из которого добавкой небольшого избытка бихромата аммония можно осадить хромат стронция. Осадок следует прокипятить, промыть дистиллятом и просушить при температуре красного каления. На воздухе он стоек. На его основе делают жёлтую антикоррозионную краску.

Осадок следует смешать с тройным количеством гидрида титана и, вместо таблетирования, набить в гильзы из плотной нержавеющей сетки. Сами же гильзы возможно более плотно уложить в длинный тигель из железа (например, диаметром 15 и длинной 150 мм). Загрузка должна занимать около половины длинны тигля. Нагревая тигель в вакууме до 1100–1200 градусов, мы будем отгонять металл из термитной смеси. Восстановление идёт в две стадии: вначале выделяющийся водород соединяется с частью кислорода, образует воду и уносит её, а затем титан восстанавливает стронций. Встанет вопрос: где его конденсировать? Проще всего сделать тигель достаточно длинным, чтобы стронций собирался в холодной зоне. Более культурно поместить в двух-чётырёх диаметрах тигля от термита пальчиковый водоохлаждаемый холодильник.