Добавить в цитаты Настройки чтения

Страница 43 из 134

Филогенетическое древо высших приматов

Генетические различия на уровне ДНК между людьми: 1 нуклеотид из 1000 между человеком и шимпанзе: 1 нукл. из 100

Обнаружены различия между человеком и другими животными по генам обонятельных рецепторов. У человека многие гены обонятельных рецепторов инактивированы. Сам фрагмент ДНК присутствует, но в нем появляются мутации, которые инактивируют этот ген: либо он не транскрибируется, либо он транскрибируется, но с него образуется нефункциональный продукт. Как только прекращается отбор на поддержание функциональность гена, в нем начинают накапливаться мутации, сбивающие рамку считывания, вставляющие стоп-кодоны и т. д. То есть мутации появляются во всех генах, и скорость мутирования примерно постоянная. Удается поддерживать ген функционирующим только за счет того, что мутации, нарушающие важные функции, отбрасываются отбором. Такие инактивированные мутациями гены, которые можно распознать по последовательности нуклеотидов, но накопившие мутации, делающие его неактивным, называются псевдогенами. Всего в геноме млекопитающих около 1000 последовательностей, соответствующих генам обонятельных рецепторов. Из них у мыши 20 % псевдогенов, у шимпанзе и макаки инактивирована треть (28–26 %), а у человека — более половины (54 %) являются псевдогенами.

Псевдогены найдены у человека также среди генов, которые кодируют семейство белков кератинов, входящих в состав волос. Так как волосяной покров у нас меньше, чем у шимпанзе, то понятно, что часть таких генов могла быть инактивирована.

Когда говорят об отличие человека от обезьяны, то в первую очередь выделяют развитие умственных способностей и способность к речи. Найден ген, связанный со способностью говорить. Этот ген выявили, изучая семью с наследственными нарушением речи: неспособностью научиться строить фразы в соответствии с правилами грамматики, сочетавшейся с легкой степенью задержки умственного развития. На слайде представлена родословная этой семьи: кружки — это женщины,

квадратики — мужчины, закрашенные фигуры — больные члены семьи. Мутация, ассоциированная с заболеванием, находится в гене F0XP2 (forkhead box Р2). У человека достаточно трудно исследовать функции гена, легче это делать у мышей. Используют так называемую технику нокаута. Ген прицельно инактивируют, если знать конкретную последовательность нуклеотидов, то это возможно, после этого у мыши этот ген не работает. У мышей, у которых выключили ген F0XP2, нарушилось формирование одной из зон мозга в эмбриональный период. Видимо, у человека эта зона связана с освоением речи. Кодирует этот ген фактор транскрипции. Напомним, что на эмбриональной стадии развития факторы транскрипции включают группу генов на тех или иных этапах, которые контролируют превращение клеток в то, во что они должны превратиться.

Способность говорить

Выявлена семья с наследственными нарушениями речи затруднениями движений, связанных с артикуляцией; нарушением разбивания слов на фонемы Мутация, ассоциированная с заболеванием, находится в гене FОXP2 (forkhead box Р2)

Чтобы посмотреть, как этот ген эволюционировал, его просеквенировали у разных видов: мыши, макаки, орангутана, гориллы и шимпанзе, после этого сравнили эти последовательности нуклеотидов с человеческой.

Оказалось, что этот ген очень консервативен. Среди всех приматов только у орангутана имелась одна аминокислотная замена, и одна замена у мыши. На слайде у каждой линии видны две цифры, первая показывает число аминокислотных замен, вторая — число так называемых молчащих (синонимических) нуклеотидных замен, чаще всего это замены в третьей позиции кодона, не влияющей на кодируемую аминокислоту. Видно, что молчащие замены накапливаются во всех линиях, то есть мутации в данном локусе не запрещены, если они не ведут к аминокислотным заменам. Это не значит, что не появлялись мутации в белок-кодирующей части, они скорее всего появлялись, но были отсеяны отбором, поэтому мы не можем их зафиксировать. В нижней части рисунка схематично изображена аминокислотная последовательность белка, отмечены места, где произошли две аминокислотные замены человека, которые, видимо, повлияли на функциональные особенности белка FOXP2.





Если белок эволюционирует с постоянной скоростью (число нуклеотидных замен в единицу времени постоянно), то число замен в ветвях будет пропорционально времени, в течение которого замены накапливались. Время разделения линии грызунов (мыши) и приматов принимается равным 90 млн. лет, время разделения человека и шимпанзе — 5.5 млн лет. Тогда количество замен ш, накопившихся, накопившихся суммарно в линии мыши и в линии приматов между точкой разделения с мышью и точкой разделения человека и шимпанзе (см. рисунок), по сравнению с числом замен h в линии человека, должно быть в 31.7 раз больше. Если же в линии человека накопилось больше замен, чем ожидается при постоянной скорости эволюции гена, то говорят об ускорении эволюции. Во сколько раз ускорена эволюция, вычисляют по простой формуле:

А.I. = (h/5.5)/[m /(2 х 90 — 5.5)] = 31.7 h/m

Где A.I. (Acceleration Index) — индекс ускорения.

Теперь надо оценить, находится ли отклонение числа замен в линии человека от в пределах случайного, или отклонение достоверно выше ожидаемого. Вероятность того, что в линии человека за 5.5 млн. лет появится 2 аминокислотные замены при том, что вероятность появления замен оценивается по линии мыши как 1/(90+84.6)=1/174.6. При этом используют биноминальное распределение B(h + m, Th/(Th+Tm)), где h — число замен в линии человека, m-число замен в линии мыши: Th=5.5, Tm=174.5.

Попробуйте самостоятельно рассчитать вероятность в приведенном примере.

Генетическое разнообразие современного человечества

Вы знаете, что антропологи подразделяют людей на три большие расы: негроиды, европеоиды и монголоиды. Представители этих рас отличаются цветом кожи, формой тела, разрезом глаз и т. д. Но на самом деле четкие различия между разными людьми, относящимся к разным расам, имеются только если мы возьмем географически отдаленные группы. Если посмотреть на все разнообразие антропометрических признаков в целом, то окажется, что четких различий нет, существует множество переходных форм. Почему и как у людей сформировались внешние различия, где и когда зародилось человечество?. Чтобы ответить на этот вопрос в 1985 году Алан Уилсон — американский генетик — вместе со своей группой исследовал митохондриальную ДНК (мтДНК), которая передается, как известно из прошлых лекций, только по материнской линии (обозначена красным). Y-хромосома передается же только по отцовской линии (синяя линия), серой линией обозначена передача аутосомной ДНК, то есть весь остальной геном, передающийся нам от всех наших предков.

Y-хромосоме не с чем рекомбинировать, поэтому она, в отличие от рекомбинирующих аутосом, передается из поколения в поколение от отца к сыну неизменной. Изменения происходят в ней только за счет новых мутаций. То же и с мтДНК.

Генетическая карта мтДНК показана на рисунке, разным цветом показаны разные гены. У человека ее размер составляет 16 500 нуклеотидов.