Страница 121 из 149
Проблемы биобезопасности трансгенных растений
Одним из главных возражений против употребления "трансгенных" продуктов питания является наличие во многих из них генов устойчивости к антибиотику (в частности, к канамицину), которые содержались в исходной конструкции ДНК в качестве селективных.
Предполагается, что эти гены устойчивости могут при переваривании пищи передаваться эндогенной микрофлоре, в том числе патогенной, в результате чего микробы могут приобрести резистентность к данному антибиотику. Однако в реальности вероятность такого события ничтожно мала — многочисленные эксперименты и наблюдения в природе относительно подобного горизонтального переноса генов до сих пор давали только отрицательные результаты.
Не стоит забывать, что встраиваемые в растения гены устойчивости "настроены" для экспрессии лишь в эукариотических, но не бактериальных клетках. Надо учесть и то, что эти селективные гены взяты из природных популяций микроорганизмов, где они сейчас широко распространены в результате активного применения антибиотиков в медицинской практике. Поэтому вероятность попадания гена устойчивости к антибиотику в микрофлору человека из природного резервуара несравнимо реальнее, чем при употреблении трансгенных растений. Однако, учитывая настроения общественности, разрабатываются подходы, для исключения присутствия "подозрительных" генов в коммерциализированных трансгенных формах.
В большинстве случаев маркерные гены устойчивости к антибиотикам сейчас заменяют на гены устойчивости к гербицидам. Правда, применение "гербицидных" генов также встречает возражения, но уже защитников окружающей среды. Предложено несколько способов избирательной элиминации маркерного гена после получения желаемого трансгенного растения, когда он фактически уже не нужен.
Очень перспективным представляется замена селективных генов на репортерные при отборе трансгенных форм растений, либо использование альтернативных селективных генов, таких как гены синтеза фитогормонов или гидролиза особых форм полисахаридов при выращивании растений в культуральной среде. Таким образом, даже эта виртуальная опасность, связанная с генами устойчивости к антибиотику, в скором времени перестанет существовать.
Что касается возможной токсичности или аллергенности трансгенных растений, то здесь применяют те же жесткие стандарты, как и для полученных традиционным путем новых сортов культурных растений или новых видов продуктов питания. Никаких особых отличий трансгенных растений от обычных по этим параметрам ожидать не приходится (разве что в лучшую сторону при блокировании синтеза токсинов или аллергенов), да и действительно, как правило, не наблюдается на практике.
Проблема возможного ущерба для окружающей среды имеет несколько аспектов. Во-первых, существует опасение, что устойчивые к гербицидам культурные растения могут при межвидовом опылении передавать эти гены близкородственным сорнякам, которые могут превратиться в неистребимые суперсорняки (superweeds). Хотя вероятность такого нежелательного развития событий для большинства сельскохозяйственных культур очень мала, генные инженеры и ученые-аграрии активно разрабатывают подходы для исключения подобной опасности. Здесь, правда, надо отметить, что данный вопрос также не нов, так как в практике сельского хозяйства уже давно используется ряд устойчивых к гербицидам сортов, полученных путем обычной селекции. При этом никакой экологической катастрофы широкое использование таких устойчивых сортов до сих пор не вызвало[77].
Тем не менее, и в этом случае, чтобы отвести любые возражения от трансгенных растений, пробуют, например, вводить в растения не один, а сразу несколько генов устойчивости к разным гербицидам. Передача нескольких генов сорнякам гораздо менее вероятна, чем одного гена. Кроме того, мультигербицидная устойчивость позволит чередовать разные гербициды при обработке посевов, что не даст возможности для распространения какого-либо определенного гена устойчивости в сорняках.
Предлагается также вводить гены устойчивости не в ядерный, а в хлоропластный геном. Это может предотвратить нежелательный дрейф генов с помощью пыльцы, так как хлоропласты наследуются только по материнской линии.
Еще один генно-инженерный путь борьбы с сорняками без использования генов резистентности к гербицидам вообще — биотрансгенный. Речь идет об использовании мелких животных, например, кроликов, для поедания сорняков на полях. При этом чтобы оградить от поедания культурные растения, в них можно ввести какой-либо ген, делающий их непривлекательными (запах, вкус) для данного животного. Такой биотрансгенный подход сразу снял бы большинство выдвигаемых сейчас возражений против трансгенных культур.
Близкие по сути экологические возражения касаются трансгенных растений со встроенными "инсектицидными" генами, способных, как считают, спровоцировать у насекомых-вредителей возникновение массовой резистентности. Здесь также предложены действенные способы для уменьшения этой опасности, например, использование генов нескольких разных токсинов и/или индуцибельных промоторов, быстро активирующихся при нападении насекомых на растение. Данная проблема, в общем, не нова, так как многие из инсектицидов, используемых сейчас на "генном уровне", давно применяют в виде чистого вещества для опрыскивания посевов.
Еще одно нежелательное следствие использования трансгенных растений с генами инсектицидов заключается в том, что пыльца этих растений может быть токсичной и для полезных насекомых, которые данной пыльцой питаются. Некоторые экспериментальные данные говорят о том, что такая опасность действительно существует, хотя о ее возможных масштабах говорить пока трудно. Однако и здесь уже предложены и испытаны адекватные генно-инженерные решения, например, использование трансгеноза через хлоропластную ДНК, или промоторов, не работающих в пыльце.
ЛИТЕРАТУРА К РАЗДЕЛУ «ГЕННАЯ ИНЖЕНЕРИЯ»
1. Алберте Б., Брей Д., Льюис Дж. и др. Молекулярная биология клетки. Т. 1–3. М.: Мир, 1994.
2. Анализ генома. Методы / Под ред. К. Дейвиса. М.: Мир, 1990. 246 с.
3. Атанасов А. Биотехнология в растениеводстве. Новосибирск: ИЦиГСО РАН, 1993. - 241 с.
4. Барановов В. С. Генная терапия — медицина XXI века // Соросовский образовательный журнал. № 3. 1999. С. 3 — 68.
5. Бекер М. Е., Лиепиньш Г.К., Райпулис Е.П. Биотехнология. М.: Агропромиздат, 1990. 334 с.
6. Борисюк Н.В. Молекулярно — генетическая конституция соматических гибридов // Биотехнология. Итоги науки и техники ВИНИТИ АН СССР. М., 1988. Т. 9. С. 73 -113.
7. Валиханова Г. Ж. Биотехнология растений. Алматы: Конжык, 1996. 272 с.
8. Глеба Ю. Ю. Биотехнология растений // Соросовский образовательный журнал. № 6. 1998. С. 3–8.
9. Глебов О. К. Генетическая трансформация соматических клеток // Методы культивирования клеток. Л.: Наука, 1988.
10. Гольдман И. Л., Разин С. В., Эрнст Л. К., Кадулин С. Г., Гращук М. А. Молекулярно-биологические аспекты проблемы позиционно-независимой экспрессии чужеродных генов в клетках трансгенных животных // Биотехнология. 1994. № 2.
11. Дыбан А. П., Городецкий С. И. Интродукция в геном млекопитающих чужеродных генов: пути и перспективы // Молекулярные и клеточные аспекты биотехнологии. Л.: Наука, 1986. С. 82–97.
12. Егоров Н. С., Самуилов В. Д. Современные методы создания промышленных штаммов микроорганизмов // Биотехнология. Кн. 2. М.: Высшая школа, 1988. 208 с.
13. Зверева С. Д., Романов Г. А. Репортерные гены для генетической инженерии растений: хара-пктеристика и методы тестирования // Физиология растений. 2000. Т. 47, № 3. С. 479–488.