Добавить в цитаты Настройки чтения

Страница 21 из 41



ro = Ke2/mc2 (K – постоянная, зависящая от выбора электродинамических единиц).

Возраст Вселенной: T/tо ≈ 1040, где tо – так называемое атомное время;

tо =h/mc2, m – характерная масса элементарных частиц (обычно – электрона или протона).

Масса Вселенной, выраженная в массах протона: M/mp ≈ 1080 = (1040)2.

Большие числа характеризуют и параметры звёзд – основных материальных объектов Вселенной.

Массы звёзд, выраженные в массах протона: M*/mp ≈ 1060 = (1040)3/2.

Наконец, одним из важнейших больших чисел является отношение электромагнитной и гравитационной сил между двумя частицами, например, между протоном и электроном: Fэл/Fгр = Ke2/Gmemp ≈ 1040.

То же соотношение в других формах:

в виде так называемой гравитационной константы связи:

αg-1 = hc/Gmp2 ≈ 1040;

отношение «классического» и гравитационного радиуса частицы:

re/rg = Ke2/Gm2 ≈ 1040;

отношение комптоновской длины и гравитационного радиуса частицы:

λe/rg = hc/Gm2 ≈ 1040;

отношение «классического» радиуса электрона и планковской длины:

re/lпл. = (hc/Gm2)1/2 ≈ 1020.

В некоторых соотношениях большие числа присутствуют в скрытом виде:

Gρ ≈ H2, где H – параметр Хаббла, H = R/R;

Gρ ≈ T-2;

HT ≈ 1;



GR ≈ h2/m3;

G/ρ ≈ (h4/m6c2);

GM/Rc2 ≈ 1;

GM ≈ c3T;

Rg ≈ R и другие.

«Большие числа» являются эмпирическими параметрами современной физической картины мира. Они отражают свойства Вселенной в целом, звёзд и соотношение между гравитационными и остальными взаимодействиями. Современная физика в конце XX века ещё недостаточно работала с величинами типа «больших чисел». Это отражается, в частности, в согласованной терминологии кратных и дольных величин. В 1930-1950-е годы диапазон этих величин составлял всего от 10-12 (пико – малая величина) до 1012 (тира – чудовище). Если числа порядка 1012 расценивались в 1930-х годах как «чудовищные», то что можно сказать о числах, имеющих значительно большие порядки! В 1960-1970-е годы диапазон наименований дольных величин был увеличен до 10-15 (фемто – пятнадцать) и 10-18 (атто – восемнадцать), а кратных – до 1015 (пета – тысячи) и 1018 (экса – шестая степень тысячи).

В отличие от остальной физики теоретическая астрофизика столкнулась с большими числами ещё в начале XX века. Для наименования таких чисел английскими астрофизиками применялась так называемая мультипликативная система числовых обозначений. Так, например, септиллион означал миллион в седьмой степени, т.е. 1042. Аналогично октиллион означал 1048 и т.д. Для общего обозначения различных огромных астрофизических параметров английские астрофизики А. Эддингтон, Э. Милн и другие начали применять термин большие числа. С чем связано появление таких больших чисел в Природе?

Среди больших чисел особое место занимает время существования Вселенной. В принципе, само по себе оно не нуждается в объяснении – время постоянно увеличивается, и таким образом оно достигло своего нынешнего значения. Чтобы измерять время, нам приходится пользоваться некой единицей времени. В отличие от таких физических величин, как скорость, электрический заряд и другие, в настоящее время у нас нет столь же фундаментальной естественной единицы времени.

Для измерения времени используются две различные шкалы: макрошкала (период вращения Земли и т.д.) и микрошкала, где в качестве единицы времени выбираются атомные единицы – время прохождения светом отрезка, равного комптоновской длине или «классическому» радиусу электрона или какой-либо другой частицы. В атомных единицах время существования Вселенной оказывается одним из больших чисел.

Параметры Вселенной, такие как её наблюдаемый радиус, плотность, параметр Хаббла, также изменяются с течением времени. Поскольку они не являются случайными, а определяются космологическими законами, то большие числа, связанные с ними, оказываются таковыми просто из-за их связи с таким большим числом, как время. Таким образом, наблюдаемый радиус Вселенной оказывается столь большим, а наблюдаемая плотность вещества столь малой просто потому, что прошло достаточно много времени. Наряду с изменяющимися параметрами стандартные космологические модели предполагают наличие некоторых неизменных параметров, таких как масса Вселенной и сила гравитационного взаимодействия, что приводит к необходимости объяснения больших чисел, связанных с ними, а также ряда соотношений между ними и параметрами, изменяющимися со временем.

Двенадцать масштабных ячеек (по пять порядков) с высокой точностью заполнены объектами Вселенной. На размерной шкале десятичных логарифмов наш мир заключён в диапазоне 61 порядка: от максимона до Метагалактики (32,8 + 28,2 = 61). Наиболее известные и распространённые системы расположены на этой шкале в следующий ряд:

Рис. 25. Количественно-качественная диаграмма «масштаб-устойчивость», называемая Волной Устойчивости (ВУ). В начале 70-х годов двадцатого столетия Сергей Иванович Сухонос [6, 7, 8] обнаружил удивительные закономерности масштабного устройства Вселенной.

0 – максимоны, 1 – фотоны, 2 – ядра электронов, 3 – электроны, 4 – протоны, ядра атомов, 5 – атомы водорода, 6 – живые клетки, 7 – человек, 8 – ядра звёзд, 9 – звёзды, 10 – ядра галактик, 11 – галактики, 12 – Метагалактика.

Введённые масштабные классы являются общими для всех видов систем Вселенной. Один и тот же масштабный класс заполнен объектами с разными свойствами. Например, класс №8 занимают планеты, ядра звёзд и биоценозы. При этом масштабные границы этих объектов оказываются инвариантными относительно их вещественного наполнения.

Чтобы ответить на все вопросы, нужно оторваться от привычных представлений и заученных правил, подняться над плоскостью отдельных научных дисциплин и посмотреть на все собранные факты сверху, действительно издали. При этом надо разобраться и в физике, и в биологии, и в астрономии, и в других науках – то есть стать эрудитом, да ещё обзавестись пытливым умом, умением задавать себе нетрадиционные вопросы и находить нетривиальные ответы. Для одного человека этого много.

В работах С.И. Сухоноса использованы надёжные, проверенные экспериментами и наблюдениями границы Вселенной. Весь наш видимый мир от протона до Метагалактики заключён в пределах размеров от 10–13 до 1027 см, что составляет ровно 40 порядков (13+27). Если же принять во внимание вполне вероятные и чаще всего признаваемые теоретические границы масштабов нашего мира, то необходимо рассматривать уже 61 порядок (от 10–33 до 1028 см – от максимона до Метагалактики). Для анализа структуры Вселенной, её красоты важно знать, существует Божественный масштабный порядок мироздания или его нет.

Какие символы выбрать для классификации? Средний размер Метагалактики – 1,6 • 1028 см. С другого края масштабов в нашем мире минимальный размер, определяемый экспериментально, имеет такая известная система, как протон (1,6 • 10–13 см или 10–12,8 см). В настоящее время в экспериментах удалось проникнуть на несколько порядков глубже, и теоретиками был поставлен вопрос: есть ли вообще предел для расщепления микрочастиц на составные части?

Квантовая теория, опираясь на всю совокупность своих знаний, вывела некий теоретический предел расщепления материи на элементы – это так называемая фундаментальная длина. Её свойства таковы, что любые меньшие частицы, если они существуют, уже не подчиняются законам нашего мира и не могут быть описаны современной физикой. Именно этот фундаментальный размер могут иметь некоторые гипотетические микрочастицы (их называли максимонами). Точное значение этого фундаментального размера – 10–32,8 см.