Добавить в цитаты Настройки чтения

Страница 31 из 39



После открытия Штаудингера довольно быстро, в 1928 году, появилась первая промышленная технология изготовления синтетического каучука. Её придумал русский учёный Сергей Васильевич Лебедев. Первый рукотворный каучук синтезировали совсем не тем способом, которым пользовалась природа. Исходным сырьём русским химикам служил обычный спирт, который в то время делали из разнообразного растительного сырья, например из картошки.

Первый в мире завод по производству синтетического каучука открылся в России в 1932 году. Немцы, испокон веков считавшиеся самыми искусными химиками, запустили своё производство четыре года спустя. С 1932 и до 1990 года наша страна производила этого вещества больше всех в мире. Сегодня почти всю резину, которая только подвернётся вам на глаза, изготавливают из синтетических каучуков. Они, конечно, сильно отличаются от того, что впервые сделал Лебедев. Теперь химики умеют делать десятки разных видов этого вещества с разными свойствами и для разных целей. И кстати, они создали точную копию природного каучука. Случилось это в 1950-х годах.

Мир по достоинству оценил заслуги Г. Штаудингера: в 1953 году ему вручили Нобелевскую премию по химии. А открытие полимеров и их исследования изменили внешний облик нашего мира, потому что человечество, поняв, что такое полимеры и какие выгоды они сулят, сделало на них ставку. Так цивилизация встала на полимерный путь развития.

«При чём же здесь одуванчики? Что у них общего с автомобилем?» — возмутитесь вы. Ах да, простите. Одуванчик, как и бразильская гевея, даёт белый млечный сок, стоит надломить его стебелёк. Так вот, в этом соке, если хорошо покопаться, можно найти крохи природного каучука. Вообще, на Земле обитает несколько сотен видов растений-каучуконосов. На Тянь-Шане растёт одуванчик кок-сагыз, сок которого содержит много каучука. Одно время его даже специально выращивали в России, на Украине и в Казахстане, засевали целые плантации, чтобы добывать каучук. Но вскоре стало понятно, что это пустая затея. Химическая промышленность научилась делать более дешёвый синтетический каучук, и делать много.

Открытие полимеров, этих длинных, почти бесконечных молекул из повторяющихся фрагментов, буквально перевернуло наше представление о мире. Оказалось, что самое главное в природе — это полимеры. Белки, из которых построено всё живое, — это полимеры. Причём их синтезом командует молекула ДНК, спрятанная в самом сердце каждой клеточки нашего организма. А молекула ДНК — это тоже полимер. Целлюлоза, из которой построены остовы растений и их клеточные оболочки, — тоже природный полимер, и, пожалуй, самый распространённый. Синтез этого вещества, позволяющего расти траве, цветам и деревьям, идёт непрерывно. И объёмы этого природного производства куда больше, чем у промышленной химии.

Самый важный полимер, который умеет делать природа, — это молекула ДНК. В ней закодированы все инструкции, по которым работают клетки любого живого организма

Наверное, химики не ошиблись, когда начали строить параллельный природе мир из полимеров. И теперь от них просто некуда скрыться. Давайте заглянем на кухню или в ванную комнату. Тазики, плошки, контейнеры, бутылки, стаканчики, одноразовая посуда, пластмассовые электрические чайники, холодильник и микроволновка, линолеум и мебель, водонепроницаемые обои или водоэмульсионная краска — всё сделано из полимеров или содержит их. Я уж не говорю о том, что мы видели с вами в шкафу.

Когда химики поняли, как устроены полимеры, они сообразили, что главное теперь — научиться присоединять одинаковые молекулы друг к другу, пристраивая хвост одной к голове другой. И тогда они будут вытягиваться в длиннющие цепочки, эластичные, лёгкие и прочные. Но чтобы заставить молекулы выстраиваться в шеренги, намертво цепляясь друг за друга, надо было создать им подходящие условия. Да и не все молекулы годились для такого парада, их тоже надо было искать и отбирать. Этим и занялись химики в середине прошлого века. Их настойчивость быстро принесла щедрые плоды.



Человечество еще не успело оправиться от сенсационного открытия синтетического каучука, как химики подбросили ему следующее рукотворное чудо — синтетический полимер по имени найлон. Его получил в 1935 году американский химик Уоллес Карозерс. К этому времени он уже несколько лет работал в исследовательской лаборатории компании «Дюпон». Ради этой исследовательской работы Карозерс отказался от блестящей карьеры преподавателя в Гарвардском университете. Он хотел полностью сосредоточиться на исследованиях. Лаборатория компании «Дюпон» была буквально напичкана самым современным на то время оборудованием. Но Карозерс понимал, что никакая, даже супероснащённая лаборатория, не может конкурировать с природой.

Поэтому надо искать обходные пути. Он искал и находил, даже когда другие отступались. Через четыре года после его изобретения компания «Дюпон» пустила первый в мире завод по производству найлона.

Полимер, полученный Карозерсом, состоял из четырёх разновидностей атомов: углерода, водорода и, в меньших количествах, азота и кислорода. Нить из него получалась прочнее самой прочной, тонкой, блестящей, прозрачной, поэтому из найлона начали незамедлительно делать чулки (точнее, из разновидности найлона — капрона) и рубашки. Женщины сразу же выкинули из своих гардеробов фильдеперсовые хлопчатобумажные чулки и обрядились в тончайшие и прозрачные капроновые, а мужчины — в найлоновые рубашки. Ради моды они даже готовы были мириться с тем, что найлоновая ткань плохо пропускала воздух, плохо поглощала влагу и потому была жаркой и душной.

Конечно, найлоновые волокна больше подходили для технических изделий, потому что были невероятно прочны. Из них и делали ткань для парашютов, корд для автомобильных покрышек и даже бронежилеты, состоящие из двух десятков слоёв найлоновой ткани. Но в судьбу найлона и других синтетических волокон вмешалась экономика. Синтетика легче конкурирующих с нею природных материалов. Из килограмма шерсти можно изготовить 4,25 квадратного метра ткани, из килограмма хлопка — 7,25, из килограмма вискозы — 9,5. А из килограмма найлона получается почти 15 квадратных метров ткани! И даже если поначалу само волокно было дороже природного, ткани из него получались дешевле.

Открытие Карозерса как будто прорвало плотину. Новые полимеры стали сыпаться, как из рога изобилия. Как вы думаете, из чего сделана пластиковая бутылка, в которую наливают любимую вами кока-колу или любимую мною питьевую воду «Николинская»? Из полиэтилентерефталата. А еще из этого полимера можно вытягивать волокна, которые у нас называют лавсаном. Это слово сложилось из первых букв Лаборатории высокомолекулярных соединений Академии наук, где его создали в 1949 году.

То же самое волокно, изготовленное в других странах, и называется по-другому: в Великобритании — терилен, в США — дакрон, во Франции — тергал, в Германии — полиэстер. Хотя во всех случаях состав волокон одинаков. Молекулы лавсана сложены из трех разновидностей атомов — углерода, водорода и кислорода, чьи повторяющиеся комбинации выстроены в гигантские по длине цепочки. Вот и получается, что названий волокон больше, чем самих волокон, если говорить об их химической сути.

Сегодня полиэтилентерефталат — один из самых популярных полимеров в мире, каждый год его производят больше, чем весит всё население нашей страны. Из его волокон делают ткань для плащей и зонтов, тюль для занавесок и кружева, разный трикотаж. Этот полимер идёт на изготовление плёнок, упаковочного материала, бутылок, контейнеров, канатов, парусов, рыболовных сетей, щёток, струн для ракеток и застёжек «молния». Он хорош для изготовления хирургических нитей и протезов сердечных клапанов, сосудов, сухожилий и связок.