Страница 46 из 49
89. На первый взгляд может показаться, что оставшегося куска хватит на семь стирок. Однако это не так. Если длина, ширина и высота куска мыла уменьшились вдвое, то его объём уменьшился не в два раза, а в восемь раз:
Если после семи стирок объём куска мыла уменьшился в восемь раз, значит оставшегося куска хватит всего на одну стирку:
90. Кусок материи в 2/3 м надо сложить пополам. Образовавшаяся линия сгиба поделит его на две равные части по 1/3 м. Затем надо сложить его ещё раз пополам. Образовавшиеся линии сгиба поделят кусок материи на четыре равные части по 1/6 м. Три таких части – это 3/6 м или искомая 1/2 метра:
91. Конечно же, композитором, равно как и художником, писателем или учёным, надо родиться, ведь если человек не родится, то он не сможет сочинять музыку, рисовать картины, писать романы или делать научные открытия. Эта шуточная задача основана на двусмысленности вопроса: «Действительно ли надо родиться?»
Данный вопрос можно понимать буквально: надо ли рождаться на свет для того, чтобы заниматься каким-либо видом деятельности; а также данный вопрос можно понимать в переносном смысле: является ли талант композитора (художника, писателя, учёного) врождённым, данным от природы или же он приобретается во время жизни упорным трудом.
92. Рассуждение, конечно же, неверно. Его внешняя правильность основана на почти незаметном исключении ещё одного варианта, который в данном рассуждении также необходимо было рассмотреть. Это вариант, когда не видит ни один глаз. Именно он и был пропущен: «Без правого глаза мы видим, без левого тоже, значит, глаза необязательны для зрения». Правильное утверждение должно быть таким: «Без правого глаза мы видим, без левого тоже видим, но без двух вместе не видим, значит, мы видим или одним глазом, или другим, или двумя вместе, но мы не можем видеть без глаз, которые, таким образом, необходимы для зрения».
93. На первый взгляд может показаться, что попугаю можно задать до 99 вопросов. На самом же деле можно обойтись гораздо меньшим числом вопросов. Спросим его так: «Тебе больше 50 лет?» Если он ответит «да», то его возраст от 51 до 99 лет; если же он ответит «нет», то ему от 1 года до 50 лет. Количество вариантов его возраста после первого же вопроса сокращается вдвое. Следующий подобный вопрос: «Тебе больше (можно спросить – меньше) 25 лет?»,
«Тебе больше (меньше) 75 лет?» (в зависимости от ответа на первый вопрос) сокращает число вариантов в четыре раза и т. д. В итоге попугаю надо задать всего 7 вопросов.
94. Этот рисунок можно видеть по-разному. Присмотритесь к нему внимательно, и вы заметите, как изображение будет переворачиваться то в одну, то в другую сторону, как бы переливаться на ваших глазах.
В одном случае мы видим шесть кубиков – три сверху, два посередине и один снизу, а в другом случае мы видим один кубик – в середине рисунка. Таким образом, всего на рисунке изображено семь кубиков.
95. Тереть телёнка можно сколь угодно долго, однако сколько телёнка ни три, у него всё равно будет четыре ноги. Эта задача-шутка основана на том, что числительное «три» имеет омоним – глагол в повелительном наклонении.
96. Рассказчик разделил верёвку не поперёк, как, скорее всего, может показаться, а вдоль, сделав из неё две верёвки одинаковой длины. Когда он связал две части вместе, верёвка стала в два раза длиннее, чем была сначала.
97. При вычитании меньшего числа из большего действует одна закономерность: сумма всех цифр разности всегда будет равна 18 (независимо от исходных чисел). Кроме того, второй цифрой разности всегда будет 9. Таким образом, зная последнюю цифру разности (или первую) можно безошибочно установить всю разность.
98. Если бы не семеро, а трое пошли, то всё равно те же самые семь рублей и нашли.
99.
100. На первый взгляд может показаться, что зазор будет настолько маленьким (ведь 10 м – это почти ничто по сравнению с 40 000 км), что в него не сможет пролезть не только человек, но даже кошка.
На самом же деле величина зазора будет приблизительно равна 1,6 м, т. е. человек не только сможет пролезть в него, но даже пройти (может быть, слегка наклонив голову).
Как известно, длина окружности равна: 2πR, где R – её радиус.
Значит радиус окружности равен: l/2π, где l – длина окружности.
Таким образом, длина окружности и её радиус находятся в отношении прямой пропорциональности, но при этом радиус меньше длины.
Увеличение длины экваториального обруча – это увеличение длины окружности. Пользуясь вышеприведённой формулой, легко установить увеличение её радиуса, которое будет величиной зазора, образовавшегося между обручем и поверхностью земного шара.
Произведя простые подсчёты, вы увидите, что при увеличении длины экваториального обруча всего на 1 м, его радиус увеличивается приблизительно на 16 см. В такой зазор может пролезть кошка. Увеличение длины обруча на 10 м (как в условии задачи) увеличивает зазор приблизительно на 1,6 м, и в него может пройти человек. Если же длина экваториального обруча увеличится на 100 м, то величина зазора будет приблизительно равна 16 м. В такой зазор вполне сможет «пролезть» пятиэтажный дом.
Словарь терминов
Аналогия (умозаключение по аналогии) – вид опосредованного умозаключения, в котором на основе сходства предметов в одних признаках делается вывод об их сходстве и в других признаках.
Дедукция(дедуктивное умозаключение) – вид опосредованного умозаключения, в котором из общего правила выводится частный случай; в дедукции рассуждение идёт от большего к меньшему, знание сужается, и поэтому её выводы достоверны.
Деление понятия – логическая операция, которая раскрывает объём понятия на основе какого-либо признака (основание деления).
Деление понятия дихотомическое – деление понятия строго на два объёма, пополам, по типу: «A и не- A».
Дизъюнкция (дизъюнктивное суждение) – вид сложного суждения, образованного из простых суждений при помощи союза «или».
Дизъюнкция бывает нестрогой, когда её элементы (входящие в неё простые суждения) друг друга не исключают.
Дилемма – разновидность условно-разделительного силлогизма, в первой посылке которого из одного или двух оснований вытекает два или одно следствие, вторая посылка является дизъюнкцией оснований или следствий, а вывод представляет собой утверждение следствия или дизъюнкции следствий (конструктивная дилемма простая и сложная, соответственно) или же отрицание основания или дизъюнкции оснований (деструктивная дилемма простая и сложная соответственно).
Закон достаточного основания – один из основных законов логики, по которому любая мысль (тезис) для того, чтобы иметь силу, должна быть доказана (обоснована) какими-либо аргументами (основаниями); причём эти основания должны быть достаточными для доказательства исходной мысли (тезиса), т. е. тезис должен вытекать из оснований с достоверностью.
Закон исключённого третьего – один из основных законов логики, по которому два противоречащих суждения об одном и том же предмете, в одно и то же время и в одном и том же отношении не могут быть одновременно истинными и не могут быть одновременно ложными.
Законы мышления (законы логики) – объективные принципы или правила мышления, соблюдение которых всегда приводит рассуждение (независимо от его содержания) к истинным выводам при условии истинности исходных суждений.
Закон противоречия – один из основных законов логики, по которому два противоположных суждения об одном и том же предмете, в одно и то же время и в одном и том же отношении не могут быть одновременно истинными, но могут быть одновременно ложными.