Добавить в цитаты Настройки чтения

Страница 12 из 26

Девятьсот с лишним лет назад древний китайский летописец Ма Дуань-линь увидел и описал редкое по красоте зрелище: казалось, огромная раскаленная игла проткнула тьму ночи. Там, где только что чернел небосвод, вспыхнула и засверкала яркая звезда. Это было в 1054 году. Вот как это событие записано в летописи: «Появилась звезда-гостья к юго-востоку от звезды Тиян-Куан и исчезла более чем через год». Другой звездочет пишет: «Она была видна днем, как Венера, лучи света исходили из нее во все стороны, и цвет ее был красновато-белый». Аналогичные записи сделали японские и арабские наблюдатели.

Гораздо лучше описана вспышка сверхновой 1572 года, которую зарегистрировал известный астроном Тихо Браге. У него был обычай — каждый вечер перед сном осматривать небосвод, даже если он не вел никаких наблюдении. И вот однажды он увидел среди привычных звезд новую яркую звезду в созвездии Кассиопеи. Шли дни, блеск звезды все увеличивался. Ее уже стало возможным наблюдать днем. Суеверные люди приняли звезду за сигнал бедствия, символ конца мира. По Европе лился колокольный звон, люди молили бога о прощении, замаливали грехи. И, как им казалось, успешно — звезда стала терять свой блеск и исчезла. А засуха и голод, которые совпали с появлением сверхновой, остались. Прибавились еще и эпидемии. Молитвы не помогли.

Но не все видели во вновь появившейся звезде вестницу несчастий. Ученые и в те времена старались записать свои наблюдения, чтобы они дошли до потомков. Вот как описывает появление этой звезды известный в свое время астроном Михель Местлин: «…Появилась новая звезда в троне Кассиопеи, там, где он касается края Млечного Пути; она привлекала внимание своим ярким блеском, небывалой звездной величиной и удивительностью событий, превосходя по силе не только Сириус, ярчайшую звезду неба, но также и Юпитер и, пожалуй, Венеру».

Появление следующей новой отметил Иоганн Кеплер. Она вспыхнула в 1604 году в созвездии Змееносца. Кеплер проследил все фазы ее развития и после ее исчезновения написал сочинение, где не только описал увиденное, но и дал толкование этому событию.

Очередная сверхновая появилась в созвездии Андромеды в 1885 году. Ее открыл в Дерптской обсерватории (ныне город Тарту) наш соотечественник Эрнст Гартвиг.

Здесь были перечислены наиболее выдающиеся вспышки сверхновых, потому что это довольно редкое явление. В нашей Галактике они вспыхивают раз в 50—100 лет. Однако, если держать под наблюдением сотни галактик, то £мело можно сказать, что в течение года хотя бы в одной из них вспыхнет сверхновая. Чтобы регистрировать такие "события, сейчас организована международная служба сверхновых. По программе этой службы области неба, наиболее богатые галактиками, систематически фотографируются, что позволяет открывать каждый год несколько сверхновых, вспыхивающих в глубинах космоса. Немало их открыли и советские наблюдатели на Крымской, Абастуманской и Бюро канской обсерваториях. Число зарегистрированных во все времена сверхновых сейчас составляет значительную цифру — около трехсот пятидесяти.

В XVIII веке французский астроном Шарль Мессье открыл Крабовидную туманность — слабо светящееся пятно. Позднее, наблюдая за туманностью, ученые заметили, что она расширяется. Удалось определить и скорость расширения. Ну, а зная эту величину, было легко подсчитать, когда произошел взрыв. Оказалось, именно тогда, когда китайский звездочет наблюдал вспышку звезды, то есть в 1054 году. Так туманность была отождествлена со взрывом сверхновой — она была его последствием. У сверхновой Кеплера тоже обнаружена слабая клочковато-волокнистая туманность. Отсюда вполне естественно было предположить, что большая туманность в созвездии Лебедя — тоже остаток сверхновой. Сейчас таких туманностей насчитывается более тридцати. Возраст некоторых из них определяется в десятки тысяч лет.

К сожалению, отчего происходят взрывы сверхновых, мы можем только догадываться. Астрономы видят вспышку, когда она уже произошла, и, следовательно, ничего не могут сказать о ее начале и развитии. Еще в 1934 году известные исследователи В. Бааде и Ф. Цвикки, в поисках причин взрывов такого масштаба, указали на вероятность быстрого выгорания звезды, превращения ее в нейтронную звезду. Теоретически эту возможность предсказал еще в 1932 году выдающийся советский физик-теоретик Л. Д. Ландау. Но какое ядерное горючее может дать взрыв такой силы? Обычная термоядерная реакция, которая идет на нашем Солнце — слияние четырех ядер водорода в ядро гелия, — медленная реакция. Звезда расходует водород за многие миллиарды лет.

Если звезда достаточно велика, то по мере сгорания ядерного горючего из-за действия больших гравитационных сил звезда сжимается, и температура в ее центре возрастает. А это приводит к тому, что начинается термоядерная реакция между ядрами гелия. Так происходит до тех пор, пока при температуре в три миллиарда градусов все легкие элементы не выгорят, превратившись в железо.



На этом ядерная эволюция звезды заканчивается: при образовании более тяжелых элементов энергия уже не выделяется, а поглощается. Наступает финальная стадия развития звезды, когда сжатие может происходить неограниченно, так как теперь «ядерная печь» дальше не разгорается и газовое давление уже не останавливает гравитационного сжатия.

Теперь идут реакции с образованием всепроникающих частиц нейтрино. Для них нет никаких помех. Ничто не может удержать эти удивительные частицы. Проходя через толщу звезды, они уносят значительную долю энергии, которая выделяется при сжатии. Эта реакция идет быстро. Резко растет и сжатие. Если бы нам удалось, увидев этот процесс, включить секундомер, то мы зарегистрировали бы, что за каждую секунду звезда будет сжиматься вдвое.

Процесс приобретает катастрофический характер. Наступает, как говорят физики, гравитационный коллапс. Когда сжатие достигает величины, при которой начинают разрушаться атомные ядра, частицы, входящие в их состав, превращаются в нейтроны. Образуется нейтронная звезда — гигантская капля из нейтронов, радиусом около десяти километров.

Но нейтрино уносят лишь часть энергии. Остальная ее часть расходуется на образование неустойчивых ядер. Вот распад этих ядер и порождает взрыв, при котором звезда сбрасывает свои наружные слои, образуя расширяющуюся газовую оболочку. Ее мы и наблюдаем как рождение сверхновой.

Сейчас уже считается вполне установившимся фактом, что при взрывах сверхновых образуется огромное количество космических частиц высоких энергий. По мере рассеяния туманности космические частицы выходят в межзвездное пространство. Удалось даже оценить их количество. Если учитывать частоту вспышек, то окажется, что вновь родившихся частиц вполне хватит для того, чтобы поддерживать неизменным такой уровень космического фона, какой мы наблюдаем во Вселенной сейчас.

Вот тут-то и наступило время вернуться к «герою нашего романа» — радиоуглероду. Раз сверхновые порождают космические частицы, то не могут ли взрывы, происходящие близко к Земле (по космическим масштабам, конечно), влиять на количество радиоуглерода в атмосфере нашей планеты? И наоборот, не может ли увеличение радиоуглерода в годичных кольцах деревьев поведать нам о взрывах сверхновых?

В 1965 году в журнале «Доклады Академии наук СССР» появилась статья ленинградских ученых — академика Б. П. Константинова и Г. Е. Кочарова, ныне профессора, одного из ведущих специалистов в области астрофизики, «Астрофизические явления и радиоуглерод», в которой как раз взрывы сверхновых звезд и рассматриваются как одна из причин увеличения этого изотопа в атмосфере Земли. Образовавшиеся при рождении сверхновой частицы проносятся через космические бездны и достигают нашей планеты. Как показывают расчеты, в это время количество радиоуглерода увеличивается вдвое, что и должны «записать» в своих годичных кольцах деревья.

За время существования Земли, то есть примерно за пять миллиардов лет, около нее — на расстоянии примерно десяти парсеков — могло произойти около десяти вспышек сверхновых. Таким образом, две из них произошли уже тогда, когда на Земле была жизнь. Излучение от таких звезд доходит до нас через несколько тысяч лет, и примерно столько же времени наша планета находится внутри расширяющейся туманности. Увеличение излучения обязательно должны были отметить сохранившиеся до нашего времени останки деревьев-долгожителей.