Страница 111 из 118
На конференции доклад Ф. Липмана вызвал взрыв споров и страстей. Выяснилось, что еще один антибиотик можно синтезировать вне рибосом, без нуклеиновых кислот. Возможно, и в живой природе удастся обнаружить «генетику без генов» - биосинтез белков на белковой же ферментной матрице, наследие далекого прошлого живых систем. Но где-то близко к началу к процессу должны были подключиться и простейшие рибонуклеиновые цепи. Как написано в солидном переводном издании «Молекулярная биология клетки» (Мир, 1994), «полипептиды (простейшие аминокислотные цепи.- А.Г.) со случайной последовательностью, возникавшие под действием пребиотических синтетических механизмов, видимо, имели каталитические свойства и, в частности, могли облегчать репликацию молекул РНК. Полинуклеотиды, способствующие синтезу полезных полипептидов в своем окружении, должны были приобрести большое преимущество в эволюционной борьбе».
Началось со скелетов?
Впрочем, и с идеей пра-ДНК ученые расставаться окончательно не спешат. Лет тридцать назад геолог В.В. Чернобровкин обратил внимание кристаллографа Э.Я. Костенецкого на одно удивительное совпадение. В двойной спиралевиной нити молекулы ДНК расстояние между ближайшими звеньями, основаниями - неважно, чья это ДНК, комара или человека - всегда одно и то же и составляет он 3,4 ангстрема. В мире исследователей кристаллов эта величина известна очень хорошо. Это размер элементарной ячейки кристалла апатита, одного из самых распространенных в природе минералов. И еще одно совпадение: апатит - один из немногих природных минералов, участвующих, наряду с белками, в строительстве многих живых организмов. В «раздачах скелетов», о которых рассказывалось в этой книге, апатит поучаствовал. Есть он и в наших костях и зубах... На этих двух совпадениях ученые разработали свой вариант теории самозарождения жизни, первичного синтеза прамолекул ДНК на естественной кристаллической матрице.
Оказалось, у апатита есть своего рода сродство с еще тремя минералами, участвующими или участвовавшими на разных стадиях эволюции в строительстве скелета многих организмов - кальцитом, арагонитом, кварцем. Ученые поставили множество экспериментов. При температуре примерно в двести градусов и при повышенном давлении - а в начальной истории Земли этап с такими почти «венерианскими» условиями, несомненно, был - в смеси этих кристаллов молекулы аммиака, метана, окиси углерода не просто спекались в белковоподобные вещества, но и, встраиваясь в кристаллическую структуру апатита и минералов-«свойственников», как на первичной матрице, строили высокоупорядоченные молекулы, весьма похожие на ДНК.
Мы не раз уже говорили о раздачах скелетов в ходе эволюции, как о своего рода внешних общегеохимических «бедствиях непреодолимой силы», к которым жизнь должна была приспосабливаться и лишь потом учиться использовать во благо. Здесь же нащупывается совсем иное. Без скелетообразующих кристаллов жизнь, возможно, вообще не могла бы сделать и самых первых шажков. Послужив матрицей вначале, природные кристаллы потом уже в этом качестве не использовались, но и никуда не уходили, всегда были рядом с порожденными при их, можно сказать, родительском участии живыми организмами, и еще и еще раз оказывали эволюции мощную поддержку в критические ее моменты. Как тут не вспомнить о поразительном провидении Дж. Бернала, который писал о будущей «обобщенной кристаллографии», где жизнь - просто частный случай великих законов самоорганизации вещества Вселенной...
Вот и в данном случае ученые стали перебирать малоразработанные, но удивительно интересные факты из области «биоминералогии». Среди ископаемых и ныне живущих одноклеточных организмов - водорослей, радиолярий, фораминифер и многоклеточных - например губок - есть такие, чей скелет образован «органоминеральным» кристаллическим веществом, состоящим на 20- 30 процентов из органики, а в остальном из кристалла. В индивидуальном развитии такого организма идет процесс минерализации - замещения биомолекул минералом, причем законы кристаллографии и биохимии здесь теснейше переплетены. Сейчас уже ясно, что когда-то под высоким давлением в раскаленной сухой среде мог преобладать этот же процесс, только с другим знаком. Да, да. Преджизнь на каком-то этапе прошла через горячую безводную фазу первичного синтеза... И когда поверхность планеты несколько остыла и появились лужи и моря, в них уже плавали и растворялись множество таких первых «кентавров», полукристаллов-полуорганизмов, биокристаллов, готовых стать жизнью... Сегодня Э.Я. Костенецкий настаивает на том, что и дальнейшая эволюция живого шла в огромной степени под действием законов кристаллографии.
Ведь и сама клеточная плазма, по современным представлениям, - это так называемый жидкий кристалл. Жидкие кристаллы сегодня работают в дисплеях портативных компьютеров и телевизоров, в сотовых телефонах и черт его знает где еще, без них рухнул бы весь технопарк нашей цивилизации. Но, оказывается, и технопарк юрского периода, и всех других периодов эволюции биосферы строился по этим суперсовременным технологиям. И мы оба, читающий и пишущий эту книгу, тоже «сконструированы» в известном смысле как кентавры из органической и неорганической материи - биокристаллы.
Солярис на Земле
«Тотальный» штурм проблемы зарождения жизни продолжается. Американский биохимик С. Фокс пытался получить белковоподобные вещества - протеиноиды - из беспорядочного набора чистых аминокислот без всяких матриц. Шесть часов спекались в специальной печи аминокислоты. Через шесть часов перед исследователями лежал янтарный образец неведомого полимера.
Это, конечно, был не белок, а почти неупорядоченная смесь молекул разной длины. Но ученые знали, сколь широко в природе распространены принципы самоорганизации. Те самые слабые водородные связи, что кодируют вторичную и третичную структуру белка, не могут не проявить себя в хаотической смеси аминокислот. И вот после дополнительной обработки растворами и подогрева протеиноид С. Фокса начал проявлять свойства упорядоченности. По многим признакам его можно было бы принять прямо-таки за белок!
Многие ученые считают, что протеиноиды могли зародиться на склонах вулканов, где были все условия для их спекания. Но зарождающейся жизни нужна вода.
Дж. Бернал писал, что жизнь зародилась буквально в грязи - в иле, глинистой мути маленьких спокойных лагун, ибо полимеризация длинных молекул гораздо быстрее идет на мельчайших минеральных частицах глины. Совсем недавно это предположение Бернала было проверено. Выяснились удивительные вещи. В так называемом монтмориллонитовом иле (самый распространенный глинистый минерал) белковоподобная цепь аминокислот полимеризовалась быстро и без нагревания. При этом полипептид можно было получить почти неограниченной длины и упорядоченности. Все зависело от размеров глинистых частиц. Если они были достаточно однородны, то они отбирали «кирпичики» для полимеризации определенного размера и веса. «Выбор» следующей аминокислоты при синтезе зависел еще и от кислотности среды. А сна, эта кислотность, в глинистом комочке закономерно менялась в ходе реакции. Вот и еще один выход из заколдованного круга: первой весьма своеобразной «рибосомой» могли послужить комочки ила...
Протеиноиды, рожденные в огне и рожденные в грязи, были исследованы. И оказалось, что эти белковоподобные структуры проявляют... ферментную активность!
Что ж, может быть, примерно так возникли в «первичном бульоне» первые, пусть очень плохие белковые матрицы. Они принялись «тотально» наращивать число молекул биополимеров, которые некому было потреблять, так что они накапливались. В какой-то момент эта система превращений приобрела замкнутый характер: один из конечных продуктов реакций смог стать матрицей - ферментом для образования исходного реактива. Цепь замкнулась. Реагирующие по замкнутому кругу полимеры могли собраться в капельки, и тогда они образовали что-то вроде неподвижных организмов. Возможно, это было нечто похожее на коацерватные капли А. Опарина или микросферы, полученные С. Фоксом при попытке разболтать протеиноид в воде.