Добавить в цитаты Настройки чтения

Страница 40 из 53

Во всех этих случаях за экипажем должна остаться возможность вмешиваться в управление в неожиданных и нештатных ситуациях.

Нет пока методов, с помощью которых можно было бы точно определить оптимальное сочетание таких факторов, как характер операций, проделываемых человеком, общие условия его функционирования и длительность пребывания на борту. Здесь опыт, как ни досадно, идет впереди теории. Тем не менее можно сказать, что сейчас автоматики и «человека» на борту ровно столько, сколько позволяет располагаемый уровень этой самой автоматики при тех задачах, которые ставятся, причем имеется стремление к экономичной оптимальной системе.

Вполне возможно, что оптимум здесь будет сдвигаться в сторону снижения доли участия человека в функционировании космических средств в целом. Однако — это очень важно отметить — средств сегодняшнего дня. На каждом новом средстве эта доля может быть снова Достаточно высокой. Лет через 10–15 на борту долговременных орбитальных станций производительность труда космонавтов будет существенно выше. Два человека, скажем, будут управляться со значительно большим комплексом аппаратуры и программой исследований.

Разумеется, современные орбитальные станции с экипажем на борту работают не только на будущие автоматические спутники или межпланетные системы. Если исходить из того, что в будущем в космосе понадобится много людей, а основания для такого утверждения имеются (хотя и не бесспорные — об этом мы поговорим немного позже), то, следовательно, нужно уже сегодня интенсивно выяснять космические возможности человека, накапливать статистику и отрабатывать элементы будущих систем и средств обеспечения жизнедеятельности и функционирования людей в космосе, включая космос открытый.

Подведем некоторые итоги нашим размышлениям. Сейчас мы уже имеем в своем распоряжении средство для длительных полетов космонавтов — комплекс «Салют» — «Союз» — «Прогресс». Он предоставляет нам возможность решения большого количества задач научных и народнохозяйственных. От этого богатства отказываться пока нет никакого резона. С другой стороны, на сегодня автоматические средства в космосе дешевле пилотируемых. Однако применять их можно эффективно лишь там, где имеется достаточная ясность путей и методов решения задач. И еще там, где присутствие человека по каким-либо причинам невозможно.

Там же, где нужно искать — экспериментировать и испытывать, — участие человека резко повышает и эффективность, и, как ни парадоксально, экономичность. Во многих случаях, при многих операциях участие человека еще долгое время будет дешевле создания и применения автоматики. Тем не менее процесс вытеснения человека автоматикой в решении космических задач будет идти вечно.

Сегодня же человек продолжает эффективно трудиться в космосе и для настоящего и для будущего.

ЗАВТРА И ПОСЛЕЗАВТРА

Где кажется Земля звездою,

Землею кажется звезда…

ВОТ ЕСЛИ БЫ НА МАРСЕ ОБНАРУЖИЛАСЬ ЖИЗНЬ…

Пилотируемые космические полеты — в принципе это не только орбитальные станции, но и различного рода межпланетные космические корабли, предназначенные для далеких экспедиций: пролетов, облетов и высадок на другие небесные тела.

Но почему же в принципе? Как мы уже говорили, еще десять-пятнадцать лет назад в сотнях книг и статей можно было прочитать о том, что развитие пилотируемой космонавтики неизбежно идет по пути: орбитальные корабли, станции, Луна, Марс и далее, как говорится, везде. С мечты о межпланетных полетах началась теория космонавтики. С нее начинали свою практическую деятельность создатели первых жидкостных ракет в 20—30-е годы. С мечтой о полетах на Луну, к планетам солнечной системы работали творцы первых спутников и пилотируемых кораблей.





Но вот пришли 80-е годы XX столетия, а межпланетные пилотируемые корабли никуда не летают. Более того, не строятся, и, насколько известно, создание их пока даже не планируется. А между тем конец 60-х годов и начало 70-х годов прошли под знаком крупного успеха космической техники — созданные в США пилотируемые корабли «Аполлон» с помощью трехступенчатых ракет-носителей «Сатурн-5» совершили 9 полетов к Луне с выходом на селеноцентрическую орбиту, в 6 из которых были осуществлены посадки специальных аппаратов на поверхность Луны.

— Вы, Константин Петрович, уже упоминали о своей поездке в Соединенные Штаты и знакомстве там с космическими разработками. Что вам как проектанту показалось наиболее примечательным в конструкции «Аполлона»?

— Американские коллеги предоставили мне возможность посидеть в корабле «Аполлон-14», который проходил тогда испытания. Не помню, правда, кто на нем потом полетел.

— Экипаж возглавил Алан Шеппард. У него, кстати, была редкая космическая судьба. Он был в самой первой семерке американских космонавтов (или астронавтов, как у нас переводят буквально), был первым, кто из них совершил в 1961 году испытательный полет в космическом корабле «Меркурий». Однако космонавтом он провозглашен не был, поскольку летал по баллистической траектории и на орбите не был. А первый настоящий космический полет он совершил только через 10 лет и сразу на Луну. Мог быть у американцев номером один, а стал двадцать шестым. Схожая судьба была и у Дональда Слейтона из той же семерки. Он вообще тогда не летал, был отчислен из отряда врачами по каким-то показателям сердца. Но сумел тренировками восстановиться до нормы и снова был включен в отряд. В 1975 году летал в космос по программе «Аполлон» — «Союз». Но, простите…

— В «Аполлоне-14» я увидел немало удачных проектных и конструкторских решений. Например, хорошо продуманную компоновку кресел. Но в то же время меня тогда удивило обилие на пультах всевозможных тумблеров, клавишей, кнопок, табло. Как они управлялись со всем этим хозяйством, трудно сказать. Думаю, астронавтам это доставляло много хлопот.

— Читал я об одном случае из практики «Аполлонов». Правда, чуть более ранней. Непосредственно перед полетом Армстронга и его друзей к Луне летал «Аполлон-10». Он выполнял почти всю программу будущего полета, кроме самой посадки. Когда взлетная ступень лунного аппарата — в ней находились Стаффорд (тоже будущий участник ЭПАСа) и Сернан — отделилась от посадочной (это было на окололунной орбите), — кабина с космонавтами начала вращаться. Сернан, который управлял ступенью, даже вскрикнул: «Мы падаем на поверхность Луны!» Стаффорд не растерялся, нашел на пульте какой-то маленький тумблер и переключил его. Ступень сразу стабилизировалась, и полет завершился благополучно. Все потом удивлялись, как это Стаффорду удалось так быстро во всем разобраться.

— Сегодня выход из этого положения нашла бы автоматика. Но в 60-е годы над многими создателями космической техники довлел опыт авиации. По ее образу и подобию компоновались пульты систем управления космическими аппаратами.

— Были и другие впечатления от американской космонавтики?

— Дело давнее, и сейчас они уже особого интереса не представляют. Помню, тогда мне понравился их центр управления полетами в Хьюстоне. Через несколько лет у нас в Подмосковье появился свой новый центр, ничуть не хуже, а в некоторых видах оборудования даже лучше. Много интересного увидали мы в области организации разработок и испытаний.

Итак, лунный пилотируемый комплекс был создан. Само по себе это хорошо, но ведь это не самоцель. Даже высадки на Луну не могут быть самоцелью. Важен научный и практический результат полетов, и только он.

Каковы же итоги лунных экспедиций?

На землю было доставлено большое количество образцов лунного грунта — около 400 килограммов. Казалось бы, наука получила важнейший материал и тайна происхождения Луны должна быть раскрыта. Но, увы, этого не произошло. Изучение грунта дало немало ценных данных, но и поставило огромное количество новых вопросов, ключ к которым пока неизвестно, где и искать. Скорее всего он так и остался на самой Луне. Принципиальных достижений с точки зрения науки в целом экспедиции на Луну пока не дали.