Добавить в цитаты Настройки чтения

Страница 51 из 55



Теперь мы можем приступить к рассказу о судьбе нейтронной звезды, масса которой растет. Масса звезды может увеличиваться от падения на нее небесных тел и за счет притока вещества от соседних звезд меньшей массы. Рост массы приводит к увеличению плотности в центре звезды.

Как мы увидим, при достаточно большой плотности нейтронная жидкость скачком переходит в новое сверхплотное состояние. При этом выделяется громадная энергия, и звезда взрывается. Причина этого перехода - неустойчивость вакуума в сильных полях, о которой мы говорили в предыдущем разделе. При большой плотности вещества возникает пионный конденсат.

Но как связана пионная конденсация с интересующей нас судьбой нейтронных звезд?

Пионная конденсация в нейтронной жидкости

Когда плотность в центре нейтронной звезды достигает критического значения пс , соответствующего пионной конденсации, должен наступить драматический поворот в судьбе звезды. Сначала в центре звезды возникает зародыш нового сверхплотного состояния нейтронного вещества. Такая конфигурация оказывается неустойчивой - по мере увеличения радиуса зародыша освобождается энергия тяготения. В равновесном состоянии значительная часть звезды должна стать сверхплотной. Поэтому сверхплотный зародыш начинает расти - вещество наружных частей звезды с большой скоростью устремляется к границе зародыша. К тому времени, когда радиус сверхплотной сердцевины достигает величины, соответствующей равновесному состоянию, вещество наружных областей продолжает по инерции двигаться, и радиус сердцевины проскакивает свое равновесное значение. Поскольку равновесие нарушено, начинается обратное движение. Таким образом, радиус сверхплотного зародыша сначала резко возрастает, а затем колеблется около значения, сравнимого с радиусом нейтронной звезды. Процесс образования сверхплотной звезды занимает тысячные доли секунды. При этом переходе выделяется энергия, в несколько раз большая той, которая освобождается при образовании нейтронной звезды. Можно ожидать, что под действием упругих волн, возникающих при колебании радиуса сверхплотной сердцевины, наружная часть звезды выбрасывается в сильно нагретом состоянии, и картина взрыва напоминает вспышку сверхновой.

Таким образом, помимо вспышек, вызванных ядерными реакциями и предшествующих образованию нейтронной звезды, возможны вспышки другой природы, возникающие в результате пионной конденсации и последующего взрыва нейтронной звезды.

К каким последствиям может привести взрыв нейтронной звезды?

Черные дыры

Если заключение о взрыве нейтронной звезды, вызванном пионной конденсацией, будет убедительно доказано теоретически или подтвердится наблюдениями, это будет означать, что нейтронные звезды не могут иметь плотность, превышающую критическое значение пс (как показывает расчет, пс имеет тот же порядок, что и ядерная плотность). Между тем принципиально важно знать, существуют ли звезды с плотностью, значительно превышающей ядерную.

Согласно общей теории относительности при массе звезды, превышающей 2-3 массы Солнца, возникает гравитационная неустойчивость - звезда начинает сжиматься, и, после того как ее радиус сделается меньше некоторого критического значения (гравитационный радиус), никакие силы отталкивания не смогут удержать материю от падения к центру - сжимающее давление сил тяжести превышает расталкивающее давление частиц вещества. Это явление называют коллапсом звезды. Оно заканчивается образованием нового объекта - черной дыры.

Черная дыра проявляет себя практически только как источник гравитационного поля. Тело, попадающее в поле черной дыры, падает к центру дыры и перестает быть видимым. Какую бы энергию ни имела частица, она не может вырваться из черной дыры - ведь с увеличением энергии частицы согласно Эйнштейну увеличивается ее масса, а следовательно, и притяжение к черной дыре. Из черной дыры не только нельзя отправить космический корабль, но даже нельзя подать световой сигнал.

В двойных звездах материя легкой звезды перетекает к более тяжелой. Анализ излучения перетекающего вещества позволяет в нескольких случаях заподозрить, что тяжелый партнер - черная дыра.

Но если бы оказалось, что нейтронные звезды в результате взрыва, вызванного пионной конденсацией, разбрасывают материю уже при ядерных плотностях, то черные дыры не могли бы образоваться.

Другое явление, вызывающее интерес к сверхплотной материи, состоит в том, что при достаточно большой плотности нейтронное вещество может перейти в новое состояние - кварковую материю.

Кварковые звезды



Напомним, что говорилось в «Истории одной симметрии». Все сильно взаимодействующие элементарные частицы - такие частицы называются адронами - состоят из нескольких типов кварков - частиц с дробным электрическим зарядом, равным -1/3 или +2/3 от заряда электрона. Нейтрон и протон (а они - адроны) состоят из трех кварков, а пи-мезон - из кварка и антикварка. Кварки, по-видимому, не существуют как свободные частицы. До сих пор все попытки обнаружить отдельный кварк давали отрицательный результат. Но зато на малых расстояниях между ними их свойства настолько хорошо изучены, что сейчас у большинства физиков нет сомнения в реальности этих частиц. Из анализа опытов по рассеянию адронов друг на друге удалось установить, что при сближении кварков взаимодействие между ними уменьшается.

Это явление было названо асимптотической свободой.

Когда сталкиваются два энергичных адрона, содержащиеся в них кварки не вылетают, а превращаются в другие нуклоны или пи-мезоны.

Для наглядности можно себе представить, что ад-рон - это нечто вроде мешка, в котором кварки движутся свободно, но за пределы которого они не могут удалиться. Если сблизить два нуклона на расстояние, меньшее размера мешка, то получится один общий мешок, в котором будет уже шесть кварков.

При большой плотности нейтронного вещества, когда расстояния между нейтронами сравнимы с радиусом мешка, нейтроны распадаются на свои составные части - нейтронная материя превращается в кварковую. Как показывают расчеты, звезда делается кварковой, когда ее плотность в 10-20 раз превышает ядерную. При этом переходе выделяется энергия и может произойти еще один взрыв звезды.

Осуществляется ли в природе кварковое состояние звезды? Или нейтронная материя уже при ядерной плотности взрывается и разбрасывается? Возможно ли, несмотря на это, образование черных дыр? Уже тот факт, что мы можем ставить такие вопросы, показывает, как далеко мы продвинулись в понимании структуры нейтронных звезд.

У каждого из нас есть свое ощущение красоты Вселенной. Удалось ли мне добавить новые краски к вашей картине мира?

Теперь, когда прочитана книга, оглянемся назад, подведем итоги.

Основа работы в любой области науки - научный

метод познания. Это не только совокупность технических приемов, как гаммы для музыканта, но и то, что в музыке называется теорией гармонии, - фундамент мировоззрения ученого. Научный метод позволяет отделить достоверное от невозможного, отделить самую красивую и даже правдоподобную догадку от доказанного утверждения.

Главное в определении научной истины - эксперимент. Эксперимент устанавливает факты. Но собрание фактов нужно превратить в стройную систему представлений - теорию, которая дает возможность предсказывать новые явления. И здесь ведущую роль играют интуиция и здравый смысл.

Как альпинисту необходимо не только владеть техникой восхождения, иметь хорошую физическую подготовку, но и обладать особыми личными психологическими качествами, так и ученому, кроме безупречного владения научным методом, нужно воспитать себя для подвижнической работы.

Любопытство, желание узнать, как устроена природа, умение удивляться, радоваться любому малому открытию, способность чувствовать красоту - эти качества должны определять выбор научной профессии.

В награду тому, кто решился посвятить себя науке, открывается удивительная стройность, красота природы, скрытая от самого пристального взгляда, - из разрозненных явлений возникает единая картина Вселенной.