Добавить в цитаты Настройки чтения

Страница 5 из 15



Итак, мы познакомились с простейшей иллюстрацией стоячих волн. Теперь давайте разберем стоячие волны с точки зрения физики.

Стоячая волна – это волна, которая образуется при наложении двух волн с одинаковой амплитудой и частотой, когда волны движутся навстречу друг другу (испущенная и отраженная волны).

Если в среде распространяется одновременно несколько волн, то колебания частиц среды оказываются геометрической суммой колебаний, которые совершали бы частицы при распространении каждой из волн по отдельности. Это утверждение называется принципом суперпозиции (наложения) волн.

В случае, когда колебания, обусловленные отдельными волнами в каждой из точек среды, обладают постоянной разностью фаз, волны называются когерентными. При сложении когерентных волн возникает явление интерференции, заключающееся в том, что колебания в одних точках усиливают, а в других точках ослабляют друг друга. Возникающий в результате колебательный процесс называется стоячей волной.

На практике стоячие волны образуются при отражении волн от различных преград. Падающая (испущенная) на преграду волна и бегущая ей навстречу (отраженная) волна, накладываясь друг на друга, формируют стоячую волну.

Таким образом, стоячую волну можно представить как суперпозицию (сумму) двух плоских волн, распространяющихся вдоль оси X в противоположных направлениях. Уравнения двух плоских волн, распространяющихся вдоль оси X в противоположных направлениях:

ψ1 = A cos(ωt – kx + φ),

ψ2 = A cos(ωt + kx + φ).

Сложение этих функций, согласно формуле суммы косинусов дает следующее выражение:

Чтобы привести это уравнение к более простому виду, выберем точку начала отсчета x, так чтобы разность φ2–φ1 стала равной 0. Аналогичным образом поступим и с точкой начала отсчета t. Ее выберем так, чтобы сумма φ1+φ2 тоже стала равной 0.

После таких преобразований формула стоячей волны будет иметь вид

ψ = 2A cos kx cos ωt

Заменив волновое число k его значением , получим уравнение стоячей волны, удобное для анализа колебаний частиц в стоячей волне:

Из этого уравнения видно, что амплитуда колебаний зависит от x: в точках, координаты которых удовлетворяют условию

амплитуда колебаний достигает максимального значения. Эти точки называются пучностями стоячей волны.

Значения координат пучностей равны

В точках, координаты которых удовлетворяют условию

амплитуда колебаний обращается в 0. Эти точки называются узлами стоячей волны.

Точки среды, находящиеся в узлах, колебаний не совершают. Координаты узлов имеют значения



Из этих формул следует, что расстояние между соседними пучностями, так же как и расстояние между соседними узлами, равно λ/2. Пучности и узлы сдвинуты друг относительно друга на четверть длины волны λ/4.

Стоячая волна не переносит энергию. Дважды за период происходит пульсация – превращение энергии стоячей волны то полностью в потенциальную энергию, сосредоточенную в основном вблизи узлов волны, то полностью в кинетическую энергию, сосредоточенную в основном вблизи пучностей волны. В результате происходит переход энергии от каждого узла к соседним пучностям и обратно.

Здесь необходимо отметить, что стоячие волны являются достаточно частым явлением в физическом мире. Они могут возникать в струнах, стержнях, жидкостях, воздушных столбах и т. д., поэтому я сделал предположение о том, что стоячие волны могут проявляться и на ценовых графиках финансовых активов.

Оставалось только найти подходящего кандидата. И такой кандидат действительно нашелся – это волновые циклы, которыми оперирует AWA.

Да-да, вы не ослышались. Именно волновые циклы выступают аналогом стоячих волн на финансовых рынках.

Но прежде чем мы продолжим, необходимо разобраться с таким понятием, как интерференция волн. Дело в том, что стоячие волны являются следствием такого фундаментального явления в физике, как интерференция волн.

Интерференция волн

В материале, посвященном стоячим волнам, я уже говорил о том, что стоячие волны возникают в процессе наложения бегущей и отраженной гармонических волн.

Стоит отметить, что природа волновых процессов здесь роли абсолютно не играет. Это могут быть механические волны в упругой среде, электромагнитные волны (в частности, свет) в прозрачной среде или, например, в вакууме. И даже, как в нашем случае, ценовые волны, возникающие на графиках финансовых активов.

Но несмотря на такие, казалось бы, кардинальные различия в природе волн, ключевым понятием здесь по-прежнему выступает принцип суперпозиции, о котором я рассказывал ранее.

Суть принципа суперпозиции заключается в том, что если две гармонические волны накладываются друг на друга в определенной точке или области пространства, то они порождают новый волновой процесс.

При этом значение колеблющейся совокупной волны всегда будет равно сумме соответствующих величин испущенной и отраженной волн по отдельности. Таким образом, стоячую волну можно рассматривать как суперпозицию бегущей и отраженной гармонических волн.

Однако если мы будем говорить не о стоячих волнах, образующихся в результате сложения бегущей и отраженной гармонических волн, а о суперпозиции двух отдельных точечных источников волн, то для описания понятия интерференции нам понадобится определение когерентности.

Просто когда речь идет о суперпозиции испущенной и отраженной волн (допустим, в струнах), они по умолчанию получаются когерентными из-за условия гармоничности.

Допустим, у нас имеются два точечных источника, создающие волны в окружающем пространстве.

Если при этом частота колебаний этих источников (частота волн) одинакова и разность фаз колебаний с течением времени не меняется, то такие источники волн называются когерентными. Складываясь друг с другом, когерентные волны способны интерферировать.

Интерференция волн – сложение когерентных волн с образованием устойчивой картины максимумов и минимумов амплитуды колебаний. На примере ниже мы видим, что в тех точках среды, где гребни волн складываются со впадинами, образуются узлы (стоячих волн), называемые минимумами интерференции: