Страница 3 из 9
– агитация, т. е. распространение информации о кандидатах, данные о которых гражданин еще не рассматривал, но разделяет ценности партии кандидата;
– определение центров формирования общественного мнения;
– выбор популярных личностей среди лояльных к бренду людей в целях повысить эффективность кампаний при помощи информационных вирусных технологий, побуждающих распространять сведения о продуктах и компании саму аудиторию, которой она предназначена;
– поиск подходящих кандидатов в сотрудники компании по данным резюме и историй успеха сотрудников, которые уже плодотворно работают в компании;
– подбор сотрудников для какого-либо проекта;
– повышение эффективности командообразования на основе подтвержденных личных и профессиональных качеств;
– фокусировка рекламных кампаний на конкретном сегменте целевой аудитории;
– выявление латентных, не выражаемых явно потребностей покупателей, которые не ищут товар в интернете и не обращаются в магазины, но в общедоступных сообщениях (постах), группах, в которых состоят эти пользователи, оставляют информацию о своих намерениях или предпочтениях;
– определение кластеров коррумпированности – связей бизнеса и представителей власти.
Задача поиска ассоциативных правил – определение часто встречающихся наборов объектов в большом множестве таких наборов. Прикладные задачи, решаемые установлением ассоциативных правил:
– изучение событий, выявление причинно-следственных связей в поведении поставщиков, покупателей, сотрудников, инвесторов, конкурентов и иных лиц, оказывающих или могущих оказать влияние на компанию;
– анализ покупательской корзины – определение сочетаний товаров, пользующихся стабильным спросом, в целях оптимизировать поиск наборов покупателями;
– стимулирование спроса за счет формирования дополнительных предложений, проведения эффективных маркетинговых акций, продвигающих среди аудитории дополнительные товары.
Задача фильтрации выбросов – обнаружение в обучающей выборке небольшого числа нетипичных объектов. К задаче сводятся проблемы
– обнаружение мошенничества, т. е. выявление аномальных финансовых показателей по выручке или объему продаж, что помогает обнаружить факт кражи денежных средств или передачу информации конкурентам;
– обеспечение информационной безопасности. В частности, аномальное время работы сотрудника или его нетипичные действия дают возможность установить факт инсайдерской деятельности либо идентифицировать несанкционированный доступ к информационной системе;
– выявление ошибок при экономических расчетах, т. е. фильтрация выбросов привлекает внимание к ошибочно введенной в ручном режиме информации за счет определения ее нетипичности или отсутствия смысла.
Задача сокращения размерности заключается в том, чтобы при помощи некоторых функций преобразования перейти к наименьшему числу признаков объекта, не потеряв при этом никакой существенной информации. Решение задачи дает возможность оптимизации:
– производственных процессов – благодаря выявлению действий, не влияющих на эффективность;
– расходов на содержание сложных систем;
– использования вычислительных ресурсов.
Задача заполнения пропущенных значений – замена недостающих значений в матрице «объекты-признаки» их прогнозными значениями. Метод замены используется в социальных исследованиях, когда данные собираются не в полном объеме; для восстановления данных при сбоях или преднамеренном уничтожении; при прогнозировании удовлетворенности от продукта на основе данных по другим продуктам и другим потребителям.
Кроме обучения с учителем и без учителя, в машинном обучении применяются и другие методы:
Обучение с подкреплением – процесс, при котором происходит обучение модели, не имеющей сведений о системе, но обладающей возможностью производить действия в ней. Действия переводят систему в новое состояние, и модель получает от системы некоторое вознаграждение. Подобное обучение используется:
– в управлении роботами при выполнении таких задач, как манипулирование предметами, навигация в загруженном пространстве, поиск устойчивого положения предмета;
– в управлении технологическими процессами;
– при персонализации показов рекламы в интернете;
– в управлении ценами и ассортиментом в сетях продаж;
– при маршрутизации в телекоммуникационных сетях.
Частичное обучение занимает промежуточное положение между обучением с учителем и без учителя. Пример прикладной задачи – автоматическая рубрикация большого количества текстов при условии, что некоторые из них уже отнесены к каким-то рубрикам. Такая задача стоит при работе с большими объемами текстовых данных экономистами и юридическими службами, а также в научной деятельности.
Динамическое обучение возможно как с учителем, так и без него. Специфика такого обучения состоит в том, что информация о состоянии объектов поступает потоком и требуется немедленно принимать решение по каждому прецеденту, одновременно доучивая модель зависимости с учетом новых прецедентов. Как и в задачах прогнозирования, здесь существенную роль играет фактор времени.
Метаобучение отличается от методов тем, что прецедентами являются ранее решенные задачи обучения. Требуется определить, какие из используемых в них приемов работают более эффективно. Конечная цель – обеспечить постоянное автоматическое совершенствование алгоритма обучения с течением времени.
Биологическое моделирование искусственного интеллекта. Биокомпьютинг, или квазибиологическая парадигма (Biocomputing), – это биологическое направление в ИИ, сосредоточенное на разработке и использовании компьютеров, которые функционируют как живые организмы или содержат биологические компоненты, так называемые биокомпьютеры. В отличие от понимания ИИ, когда исходят из положения о том, что искусственные системы не обязаны повторять в своих структуре и работе структуру и протекающие в ней процессы, присущие биологическим системам, сторонники биокомпьютинга считают, что феномены человеческого поведения, способность человека к обучению и адаптации есть следствие именно биологической структуры и особенностей ее функционирования. Биокомпьютинг позволяет решать сложные вычислительные задачи, организуя вычисления при помощи живых тканей, клеток, вирусов и биомолекул. Часто используют молекулы дезоксирибонуклеиновой кислоты, посредством которых создают ДНК-компьютер. Биопроцессором также могут служить белковые молекулы и биологические мембраны. Например, на основе бактериородопсин-содержащих пленок создают молекулярные модели перцептрона.
Представление и использование знаний. Представление знаний (ПЗ), или Knowledge Representation (KR) – это область ИИ, в которой изучают то, как могут быть представлены знания и факты о мире и какие рассуждения могут быть сделаны с этими знаниями. Проблематикой ПЗ является возможность представления знаний таким образом, чтобы они были достаточными (в полном объеме содержали знания, необходимые для решения проблемы); не избыточными (компактными, естественными, пригодными для эффективных вычислений); способными выразить особенности проблемы; могли компенсировать недостаточную точность представляемых данных и обеспечить приемлемое время вычислений.
Для решения этих задач используется методология инженерии преставления знаний, в которых выделяют:
– декларативные знания, основанные на понятиях, фактах и объектах. Они дают всю необходимую информацию о проблеме в виде простых истинных или ложных утверждений;
– процедурные знания – правила, стратегии, программы и процедуры. Они описывают то, как проблема может быть алгоритмически решена, и шаги на пути ее решения;
– эвристические знания, накапливаемые интеллектуальной системой в процессе ее функционирования, а также заложенные в ней априорно, но не имеющие статуса абсолютной истинности в данной проблемной области. Обычно эвристические знания связаны с отражением в базе знаний неформального опыта решения задач. Эвристические знания основаны на правиле «большого пальца», т. е. на отказе от очевидно неприемлемых вариантов. Эвристические представления полезны для управления процессом рассуждения. При этом представление знаний базируется на стратегиях решения проблем в соответствии с опытом преодоления прошлых проблем, которым обладает эксперт;