Добавить в цитаты Настройки чтения

Страница 6 из 11

100G/400G PAM4 модули являются одним из ключевых элементов современных оптических коммуникационных систем. Они используют технику модуляции PAM4 (Pulse Amplitude Modulation with 4 levels) для передачи данных на скоростях 100 Гбит/с и 400 Гбит/с.

Принцип работы этих модулей основан на изменении амплитуды импульсов света, чтобы кодировать информацию. В отличие от более простой техники двоичной амплитудной модуляции (BAM), где каждый символ представлен одним уровнем амплитуды, в PAM4 каждый символ представлен четырьмя уровнями амплитуды.

Для достижения этого используются высокоскоростные лазерные диоды или лазерный источник света, способные создавать короткие и интенсивные импульсы света. Эти импульсы проходят через оптическое волокно и приходят к фотоприемнику, который обратно преобразует оптический сигнал в электрический сигнал.

На стороне приемника сигнала проводится обработка и демодуляция сигнала PAM4, чтобы извлечь передаваемую информацию. Для этого используются специальные алгоритмы обработки сигнала, такие как линейное сочетание (linear equalization) и решающее устройство (decision device), которые позволяют достичь высокой скорости передачи данных.

100G/400G PAM4 модули имеют большую пропускную способность по сравнению с более старыми технологиями модуляции, такими как NRZ (Non-Return to Zero). Они могут быть использованы в различных приложениях связи, включая центры обработки данных (data centers), телекоммуникационные системы и другие высокоскоростные оптические коммуникационные системы.

Интегральные волноводы являются ключевыми компонентами фотоники, которые позволяют управлять и направлять поток света на кристаллическом чипе. Они основаны на принципе распространения оптической энергии в виде электромагнитных волн по специально созданным структурам.

Принцип работы интегральных волноводов базируется на использовании оптического явления, называемого полным отражением. Полное отражение происходит при переходе света из среды с более высоким показателем преломления (обычно это материал подложки) в среду с более низким показателем преломления (например, слой фоторезиста). В результате этого явления свет остается запертым и может быть направлен по определенной траектории.

Основная конструкция интегрального волновода состоит из двух или более слоев материала с различными показателями преломления. Обычно используются методы литографии и химической обработки для создания этих структур на поверхности кристаллического чипа. В результате получается плоский волновод, где свет распространяется вдоль определенной траектории.

Интегральные волноводы могут быть различных типов, таких как прямые (straight), изгибаемые (bent) или спиральные (spiral). Это позволяет создавать разнообразные схемы и компоненты на основе этих структур, такие как делители мощности, фазовращатели, модуляторы и детекторы.

Принцип работы интегральных волноводов заключается в передаче и управлении светом по заданной траектории без значительных потерь. Они играют ключевую роль в современной фотонике для достижения высокой скорости передачи данных и минимизации помех при обработке оптических сигналов.

Устройства для связи внутри платы, также известные как Co-packaged Optics (CPO), представляют собой технологию, которая интегрирует оптические модули непосредственно на поверхности чипа электронного устройства. Они обеспечивают высокую пропускную способность и малую задержку передачи данных на коротких расстояниях.

Принцип работы CPO основан на использовании компактных оптических модулей, которые содержат лазерный и фотодетекторный элементы, а также необходимую оптическую систему для направления светового потока. Эти модули размещены близко к процессорам или другим активным элементам на самой плате.

В процессе работы CPO использует волноводы для руководства светом от лазера до приемника. Волноводы могут быть выполнены из материалов с высоким показателем преломления, чтобы минимизировать потери сигнала. Лазер генерирует оптический сигнал, который затем направляется через волновод к фотодетектору. Фотодетектор преобразует оптический сигнал обратно в электрический, который затем может быть обработан процессором или другими устройствами на плате.

Преимущества работы CPO включают высокую пропускную способность, низкую задержку и малый размер. Они также позволяют достичь более компактного дизайна системы, что особенно важно для современных вычислительных устройств с большой плотностью компонентов. Кроме того, использование оптической связи помогает снизить потребление энергии и повысить производительность системы.





Принцип работы CPO отличается от традиционной оптики, где оптические модули располагаются отдельно от чипов на фотонических модулях. Вместо этого CPO интегрирует оптические функции прямо на самой плате или кристаллическом чипе, что делает его более эффективным и экономичным решением для коротких расстояний передачи данных внутри устройства.

Кроме основных принципов работы, можно дополнить описание устройств для связи внутри платы (CPO) следующими деталями:

Интеграция и упаковка: CPO-модули обычно интегрируются непосредственно на поверхности чипа или кристаллического модуля электронного устройства. Это может быть достигнуто с использованием различных техник микроэлектроники и оптической фотолитографии. Подходящая система связи может быть разработана таким образом, чтобы соответствовать требованиям конкретной аппаратной платформы.

Пассивное параллельное соединение: Одной из ключевых особенностей CPO является возможность создания массивных параллельных соединений, то есть одновременная передача нескольких оптических каналов данных между активными элементами на плате. Это значительно повышает пропускную способность и эффективность передачи данных внутри системы.

Управление сигналами: Для эффективного функционирования CPO требуются методы управления и контроля оптических сигналов. Это включает в себя мониторинг и регулировку мощности оптического сигнала, компенсацию потерь на расстоянии передачи и управление модуляцией для достижения требуемой скорости передачи данных.

Охлаждение: При высоких скоростях передачи данных может возникать проблема нагрева CPO-модулей. Для обеспечения надежной работы необходимы эффективные методы охлаждения, которые могут быть интегрированы в конструкцию платы или чипа.

Стандартизация: В настоящее время активно разрабатываются стандарты для CPO, чтобы обеспечить интероперабельность и совместимость различных производителей. Это поможет ускорить внедрение технологии и расширить ее применение в широком диапазоне приложений.

Устройства для связи внутри платы (CPO) представляют перспективную технологию для повышения производительности систем связи на коротких расстояниях. Их комбинация с другими новаторскими решениями, такими как фотонные кристаллы и метаматериалы, может привести к созданию более эффективных и компактных систем связи в будущем.

Коммутационная матрица (или коммутатор) – это устройство, используемое в телекоммуникационных и сетевых системах для управления потоками данных или сигналов между различными портами или каналами.

Принцип работы коммутационной матрицы основан на перенаправлении данных от одного порта к другому. Когда данные поступают на входную сторону коммутатора, он анализирует адрес назначения и принимает решение о передаче этих данных на соответствующий выходной порт. Для этого коммутационная матрица обычно имеет таблицу маршрутизации, которая содержит информацию о связях между входными и выходными портами.

Существуют разные типы коммутационных матриц, такие как:

Кросс-бар: Это самый распространенный тип коммутационной матрицы. Он состоит из двумерного массива переключателей (как правило, электромеханических или полупроводниковых), где каждый переключатель соединяет определенный входной порт с определенным выходным портом.