Добавить в цитаты Настройки чтения

Страница 3 из 22

Легко убедиться, подставляя в данную формулу из предыдущей таблицы различные значения r и t, что с удалением от Земли скорость спутника уменьшается и на высоте 36 000 км она становится равной всего 3,1 .

Таким образом, если человечеству удастся создать искусственный спутник Земли, то вселенная обогатится еще одним небесным телом, которое, несмотря на свое искусственное происхождение, будет в своем движении подчиняться тем же законам, что и настоящие небесные тела.

В конце задачи Ньютона сказано, что можно заставить тело навсегда «уйти в небесные пространства и продолжать удаляться до бесконечности». В сущности здесь утверждается, что возможно сообщить такую скорость телу, при которой оно не упадет на Землю и даже не станет ее спутником, а навсегда покинет нашу планету, отправившись в межпланетное путешествие. Возможно ли это?

Закон всемирного тяготения, открытый Ньютоном, утверждает, что тела[1] с массами M и m притягивают друг друга с силой, пропорциональной произведению их масс и обратно пропорциональный квадрату расстояния (r) между ними. Иначе говоря:

где f — коэффициент пропорциональности, называемый постоянной тяготения.

Из закона тяготения вытекает важное следствие. Допустим, что тело с массой m находится на поверхности планеты, масса которой М, а радиус равен R. Тогда, как можно доказать методами высшей математики, работа, которую надо совершить, чтобы удалить тело с поверхности планеты в бесконечность, равна .

Вернемся снова к задаче Ньютона. Чтобы снаряд, выброшенный из ньютоновой пушки, смог улететь в бесконечность, необходимо сообщить ему такую кинетическую энергию, которая бы равнялась указанной выше работе.

Следовательно, если масса снаряда m, а скорость его вылета υ, то , откуда .

В первом приближении, вес снаряда, находящегося на Земле, есть сила его притяжения к Земле, т. е.  или .

Сравнивая две полученные формулы, приходим к заключению, что искомая скорость (без учета сопротивления воздуха) может быть найдена по формуле . Учитывая, что g=9,8 , а радиус Земли R=6370 км, получаем υ=11,2 .

Оказывается, отправиться в путешествие по вселенной дело непростое — для этого нужно приобрести начальную скорость не менее 40 000 ! Такова та «скорость отрыва», к достижению которой стремится современная техника.

Разумеется, во времена Ньютона, когда транспортные средства сообщения ограничивались кабриолетами и дилижансами, огромные скорости казались возможными лишь в мире небесных тел. С такой чисто астрономической точки зрения и рассматривал Ньютон решение своей знаменитой задачи.



Ему удалось не только найти скорость отрыва от Земли, но и вычислить, по какой же кривой в этом случае полетит брошенное тело. Мы не будем приводить вычислений Ньютона, потому что нахождение всех возможных траекторий брошенного тела в задаче Ньютона требует применения высшей математики. Ограничимся лишь тем, что укажем конечные результаты.

Оказывается, снаряд, покинувший ствол ньютоновой пушки в горизонтальном направлении со скоростью 11,2 , начнет двигаться по параболе. Как известно, парабола в отличие от окружности представляет собой разомкнутую кривую, обе ветви которой, постепенно удаляясь друг от друга, уходят в бесконечность. Вершина параболы в задаче Ньютона совпадает с воображаемой пушкой и выброшенный ею снаряд станет двигаться по одной из половин параболы.

У читателя естественно мог возникнуть вопрос: что же произойдет со снарядом, если его скорость будет больше «круговой» скорости в 8 , но меньше «параболической» скорости в 11,2 ?

Ньютон доказал, что в таком случае снаряд превратится в искусственный спутник Земли, но только обращаться вокруг Земли он будет не по окружности, а по эллипсу (рис. 2).

Рис. 2. Связь между скоростью тела и формой его траектории.

Чем с большей скоростью снаряд покинет ствол орудия, тем по более вытянутому и крупному эллипсу он полетит. На рисунке показана эллиптическая орбита спутника, по которой он будет двигаться, если его скорость лежит в пределах от 8 до 11 . При скоростях, близких к параболической, эллиптические орбиты становятся настолько огромными и вытянутыми, что вблизи ньютоновой пушки их трудно отличить от параболы. Наконец, когда достигнута «скорость отрыва», вместо обращения Земли по эллиптической орбите спутник навсегда покинет Землю, отправившись, в путешествие по параболе.

Мыслим и такой случай, когда скорость снаряда станет больше 11,2 . Тогда, как доказал Ньютон, тело никогда не вернется на Землю, но двигаться оно будет не по параболе, а по одной из гипербол. Чем больше скорость снаряда, тем более «разогнутой» становится его гиперболическая орбита, тем больше она приближается по своей форме к прямой, служащей касательной к поверхности Земли в вершине ньютоновой горы. Само собой разумеется, двигаться по касательной снаряд никогда не сможет — для этого его скорость должна стать бесконечно большой, что практически недостижимо.

Подведем итоги:

Снаряд ньютоновой пушки может лететь по разным траекториям. Если его скорость меньше круговой (8 ), снаряд падает обратно на Землю по дуге, на малом протяжении сходной с параболой[2] при скорости 8 снаряд превращается в искусственный спутник Земли, обращающийся вокруг нашей планеты по круговой орбите. Могут быть созданы и «эллиптические» спутники, для чего необходимо, чтобы их начальная горизонтальная скорость заключалась в пределах от 7,9 до 11,2 . Наконец, для совершения межпланетного перелета необходимо сообщить телу скорость не менее 11,2 . В этом случае оно полетит по параболической или по одной из гиперболических орбит.

Ньютон был основателем небесной механики — науки о движениях небесных тел, вызванных их взаимным притяжением. Ему принадлежит полное решение основной, простейшей задачи небесной механики — так называемой «задачи двух тел».

Представим себе два небесных тела с известными массами m1 и m2. Допустим, что тела притягивают друг друга и в начальный момент расстояние между ними равно r (рис. 3). Скорость каждого из тел изобразится вектором, величину и направление которого будем считать известными (векторы υ1 и υ2). «Задача двух тел» заключается в том, чтобы, исходя из указанных начальных данных, определить положение тел для любого момента времени в будущем и в прошлом.