Страница 5 из 5
5. Охлаждение: Температура уменьшается со временем (обычно по экспоненциальному закону). С уменьшением температуры вероятность принятия худшего решения также уменьшается, что позволяет алгоритму "остыть" и сойтись к стабильному решению.
6. Окончание: Алгоритм продолжает итерации до тех пор, пока температура не станет достаточно низкой, и вероятность принятия худшего решения не станет практически нулевой. В конечном итоге, мы получаем оптимальные параметры модели.
Преимущества и применения:
Simulated A
Он также может быть применен в других областях, таких как оптимизация в производстве, распределение ресурсов, задачи маршрутизации и многие другие, где существует потребность в поиске глобальных оптимумов в сложных и шумных функциях.
Заключение:
Simulated A
Регуляризация и предотвращение переобучения: Как заставить сеть обучаться лучше
В предыдущих главах мы обсуждали, как нейронные сети обучаются на данных и как выбирать функции потерь для задачи. Однако, обучение нейронных сетей может быть подвержено опасности – переобучению. Переобучение происходит, когда модель слишком хорошо запоминает обучающие данные, но не может обобщить знания на новые, реальные данные. Эта глава посвящена методам регуляризации и техникам, которые помогут вам предотвратить переобучение и сделать вашу нейронную сеть более устойчивой и обобщающей.
1. Добавление шума к данным
Добавление шума к данным – это мощный метод предотвращения переобучения в нейронных сетях. Этот метод основывается на идее того, что, добавляя случайный шум к обучающим данным, мы увеличиваем их разнообразие и обучаем модель более устойчиво.
Давайте рассмотрим это подробнее:
Как это работает?
Представьте, что у вас есть обучающий набор данных для задачи классификации изображений. Каждое изображение представляет собой матрицу пикселей, и каждый пиксель имеет свое значение интенсивности (яркости). Добавление шума к данным означает, что мы изменяем значение некоторых пикселей случайным образом.
Примеры добавления шума:
1. Гауссовский шум: Мы можем добавить случайный шум, моделируя его как случайные значения из нормального распределения. Это делает изображения менее четкими и более похожими на реальные фотографии, на которых может быть некоторый шум.
2. Случайные повороты и сдвиги: Для изображений, например, лиц, мы можем случайно поворачивать или сдвигать изображения. Это помогает модели обучаться на лицах в разных ракурсах и положениях.
3. Добавление случайного шума к данным в форме артефактов: В задачах, связанных с компьютерным зрением, мы также можем добавить случайные артефакты, такие как пятна или мелкие искажения, чтобы сделать данные менее "чистыми".
Преимущества добавления шума к данным:
1. Предотвращение переобучения:
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.