Страница 2 из 6
Понятное дело, мать Джона была расстроена этими новостями. Тем не менее, хотя она и хотела выздороветь, она совсем не хотела принимать лекарства от остеопороза. Распространенными побочными эффектами таких лекарств являются головные боли, тошнота, боли в желудке, изжога, лихорадка и озноб, боль при мочеиспускании и головокружение. К менее распространенным побочкам относятся редкие формы рака и проблемы с челюстями, аналогичные проблеме незаживающей полости после удаления зуба или разрушению челюстных костей.
Большинство людей, столкнувшихся с такой ситуацией, вынуждены были бы делать трудный выбор: принимать фармацевтические препараты и надеяться, что им удастся избежать симптомов из длинного списка неприятных побочных эффектов или отказаться от медикаментов и надеяться, что перелома не случится. К счастью, мать Джона не относится к большинству людей – у нее есть сын, проявляющий живейший интерес к человеческой физиологии, а кроме того, ему повезло иметь замечательного наставника по части решения проблем, каким был его отец. С такой поддержкой этих членов семьи прогнозы развития ее заболевания были какими угодно, только не стандартными.
Отец Джона входил в команду, спроектировавшую и построившую луноход Lunar Rover. За свою карьеру он получил свыше 300 патентов. Он любит щеголять своей шляпой изобретателя даже дома, где он когда-то соорудил систему распрыскивателей на датчиках движения для защиты домашнего сада от животных, любящих шастать по участкам в поисках еды – вода из этих распрыскивателей вылетала под напором такой силы, что могла свалить с ног взрослого оленя. Не стоит и говорить, что после знакомства с этой системой животные предпочитали обходить его сад стороной.
Поэтому нет ничего удивительного в том, что, узнав о диагнозе своей матери, Джон сделал то же, что сделал бы его отец. Столкнувшись с трудностями, он преисполнился решимости отыскать решение. Вот так все было сложно и легко одновременно.
В ПОИСКАХ НАИБОЛЬШЕГО ВОЗДЕЙСТВИЯ
Для решения этой проблемы Джону сначала нужно было выполнить первую задачу: понять, какие факторы внешней среды оказывают позитивное воздействие на плотность костей. Он решил, что лучший способ узнать эту информацию – найти людей, которые уже выбивались в этом на фоне всех остальных. Если существует некая группа людей, достигших сверхчеловеческих показателей плотности костей, то он сможет попробовать выявить привычки поведения, которые привели их к таким результатам. И если он добьется успеха в этом, возможно, найдется способ обратить эти новые познания на помощь матери.
Вскоре он узнал, кто составляет его целевую группу: гимнасты. Люди, занимавшиеся гимнастикой, имели более высокую плотность костей, чем негимнасты той же возрастной группы, даже если гимнастику они забросили очень давно[2]. Джон заметил, что ключом к силе их костей были нечастые, но интенсивные физические воздействия, потому что они провоцировали адаптивную реакцию самоусиления в костях, которая является механизмом защиты против постепенно нарастающего воздействия, способного вызвать реальную травму или перелом. Этот эффект имеет взаимосвязь с регулярными занятиями гимнастикой.
Гимнасты сталкиваются с физическим воздействием, которое, как думает большинство людей, человеческое тело не в состоянии выдержать. К примеру, когда гимнасты спрыгивают с разновысоких брусьев и приземляются на поверхность, резкое торможение порождает ударное воздействие, способное превышать массу их тела в десять раз[3]. Это значит, что скелетно-мышечная система гимнаста весом 54 килограмма может испытывать нагрузку в 540 килограммов, пусть всего и на короткое мгновение, при исполнении довольно стандартного гимнастического маневра.
Открыв для себя эту информацию, Джон начал читать все исследования, посвященные нагрузке на кости и адаптации костей к ним, какие только смог отыскать. Одним из самых ранних примеров исследований такого рода была работа, опубликованная в газете в 1892 году, которая описывала законы механотрансдукции[4]. В работе утверждалось, что кости способны адаптироваться к стрессовым нагрузкам во многом так же, как это делают мышцы. Другое исследование касалось фермеров, сталкивавшихся с физическими воздействиями высокой мощности – механизмы адаптации их костей исследователи изучали путем извлечения костей из мертвых тел. Эти исследования, казалось, подтверждали гипотезу Джона, чем подкрепили его решительное стремление продолжить работу над этим проектом.
Разумеется, мама Джона в свои 70+ лет не собиралась начинать участвовать в соревнованиях по гимнастике. Когда кости человека уже подверглись структурным поражениям вследствие остеопороза или остеопении, прыжки с высоких объектов едва ли могут стать для него безопасной практикой. Однако Джон подумал, что создание медицинского аппарата, симулирующего такого рода мощные воздействия, но устраняющего связанные с ними риски, находится в пределах возможного.
Джон начал свое приключение по разработке подобного устройства с выявления тех положений, в которых человеческое тело, как правило, принимает на себя мощное физическое воздействие. Далее он представил себе устройство, контролируемое роботизированной рукой, с помощью которого человек будет помещаться в эти положения «готовности к воздействию». И, наконец, он осознал необходимость в компьютерной программе, способной контролировать весь этот процесс, обеспечивать обратную биологическую связь и гарантировать то, что воздействие можно будет регулярно повторять в течение большого количества сессий.
Держа в уме это видение, Джон набросал чертеж своего изобретения на «салфетке для коктейля». На первый взгляд оно казалось схожим с тренажерами для занятий в спортзале, но в реальности оно серьезно отличалось своей функциональностью от любого существовавшего оборудования. Предполагаемый медицинский аппарат строился на принципе имитации того мощного внешнего воздействия, которому подвергаются человеческие тела при занятии гимнастикой.
Задумав сложный остеогенный нагрузочный аппарат, спроектированный для измерения силы, необходимой для провоцирования роста костей и воздействия этой силы на организм, Джон начал разгадывать шифр остеопороза, стремясь ослабить его или даже обратить вспять.
ИЗОБРЕТЕНИЕ РЕВОЛЮЦИОННОГО МЕДИЦИНСКОГО УСТРОЙСТВА
Тем не менее он нуждался в помощи с проектированием и сооружением прототипа. И хотя на тот момент он работал над своей диссертацией в области биомедицинской инженерии, задуманный им проект требовал компетенций в области электрической инженерии, а этими знаниями он не обладал. Навыки его отца в сфере машиностроения и National Instruments (многонациональная компания – производитель инструментов и тестового оборудования) оказались очень кстати на этой фазе разработки проекта. В течение следующих нескольких лет Джон неоднократно тестировал несколько различных концепций остеогенного нагрузочного устройства.
Спустя несколько лет одна из больниц Лондона приобрела одно из остеогенных нагрузочных устройств Джона и провела его тестовые испытания в рамках своего исследования, оценив воздействие аппарата на женщин постменопаузного периода с диагнозами «остеопения» или «остеопороз». Результаты оказались даже более многообещающими, чем предполагал Джон. С помощью устройства растренированные женщины в возрасте за пятьдесят и шестьдесят создавали воздействие, девятикратно превышавшее вес их собственного тела. Это значительно больше той силы, которой профессиональный тяжелоатлет может добиться при помощи традиционного оборудования для поднятия тяжестей, а женщины с нулевой спортивной подготовкой справлялись с этим относительно легко при минимальном риске травмы.
Примерно в это время Джон подтянул Генри Алкайра, восемнадцатилетнего студента факультета авиастроения Калифорнийского политехнического, в качестве интерна. Следующие несколько лет Генри занимался не только своими профильными научными исследованиями, но и сотрудничал с Джоном над разработкой продукта для последующих версий остеогенного нагрузочного устройства. После длительного периода осторожного и выверенного развития на свет родилась нынешняя коммерческая версия Spectrum System компании OsteoStrong – Robotic Musculoskeletal Development System (RMDS) или Роботизированная система развития скелетно-мышечного аппарата.
2
Jürimäe, J., Gruodyte-Raciene, R., & Baxter-Jones, A. D. (2018). Effects of Gymnastics Activities on Bone Accrual during Growth: A Systematic Review. Journal of Sports Science & Medicine, 17(2), 245.
3
Marcus, R. (1996). Skeletal Impact of Exercise. The Lancet. November 1996. 384(9038): 1326–1327.
4
Wolff, J. (1892). Das Gesetz der Transformation der Knochen. Berlin, Germany; Verlag von August Hirschwald.