Страница 2 из 11
# Гиперпараметры
random_dim = 100
epochs = 10000
batch_size = 128
# Создание генератора
def build_generator():
model = tf.keras.Sequential()
model.add(layers.Dense(256, input_dim=random_dim))
model.add(layers.LeakyReLU(0.2))
model.add(layers.BatchNormalization())
model.add(layers.Dense(512))
model.add(layers.LeakyReLU(0.2))
model.add(layers.BatchNormalization())
model.add(layers.Dense(1024))
model.add(layers.LeakyReLU(0.2))
model.add(layers.BatchNormalization())
model.add(layers.Dense(784, activation='tanh'))
model.add(layers.Reshape((28, 28)))
return model
# Создание дискриминатора
def build_discriminator():
model = tf.keras.Sequential()
model.add(layers.Flatten(input_shape=(28, 28)))
model.add(layers.Dense(1024))
model.add(layers.LeakyReLU(0.2))
model.add(layers.Dense(512))
model.add(layers.LeakyReLU(0.2))
model.add(layers.Dense(256))
model.add(layers.LeakyReLU(0.2))
model.add(layers.Dense(1, activation='sigmoid'))
return model
# Функции потерь и оптимизаторы
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
def discriminator_loss(real_output, fake_output):
real_loss = cross_entropy(tf.ones_like(real_output), real_output)
fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
total_loss = real_loss + fake_loss
return total_loss
def generator_loss(fake_output):
return cross_entropy(tf.ones_like(fake_output), fake_output)
generator_optimizer = tf.keras.optimizers.Adam(learning_rate=0.0002, beta_1=0.5)
discriminator_optimizer = tf.keras.optimizers.Adam(learning_rate=0.0002, beta_1=0.5)
# Создание генератора и дискриминатора
generator = build_generator()
discriminator = build_discriminator()
# Функция обучения GAN
def train_gan():
for epoch in range(epochs):
# Генерация случайных векторов из латентного пространства
noise = np.random.normal(0, 1, size=[batch_size, random_dim])
# Генерация сгенерированных изображений генератором
generated_images = generator(noise)
# Получение случайных реальных изображений из обучающего набора
image_batch = train_images[np.random.randint(0, train_images.shape[0], size=batch_size)]
# Сборка батча из реальных и сгенерированных изображений
X = np.concatenate([image_batch, generated_images])
# Создание векторов меток для реальных и сгенерированных изображений
y_dis = np.zeros(2 * batch_size)
y_dis[:batch_size] = 0.9 # односторонний мягкий ярлык для гладкости
# Обучение дискриминатора на батче
discriminator.trainable = True
d_loss = discriminator.train_on_batch(X, y_dis)
# Обучение генератора
noise = np.random.normal(0, 1, size=[batch_size, random_dim])
y_gen = np.ones(batch_size)
discriminator.trainable = False
g_loss = gan.train_on_batch(noise, y_gen)
if epoch % 100 == 0:
print(f"Epoch: {epoch}, Discriminator Loss: {d_loss}, Generator Loss: {g_loss}")
# Обучение GAN
gan = tf.keras.Sequential([generator, discriminator])
gan.compile(loss='binary_crossentropy', optimizer=generator_optimizer)
train_gan()
```
Код представляет собой простую реализацию генеративной сети (GAN) для генерации реалистичных изображений с использованием библиотек TensorFlow и Keras в Python. Давайте подробно опишем каждую часть кода:
1. Загрузка данных MNIST:
– Загружается набор данных MNIST с рукописными цифрами с помощью функции `tf.keras.datasets.mnist.load_data()`.
– Обучающие изображения сохраняются в переменной `train_images`, а метки классов (которые в данном случае не используются) – в переменной `_`.
– Изображения преобразуются в одномерный формат и нормализуются в диапазоне [-1, 1], чтобы облегчить обучение модели.
2. Определение гиперпараметров:
– `random_dim`: размерность входного шумового вектора (латентного пространства), который будет использоваться для генерации изображений.
– `epochs`: количество эпох обучения GAN.
– `batch_size`: размер батча, используемого для обучения на каждой итерации.
3. Создание генератора (`build_generator`):
– Генератор представляет собой нейронную сеть, которая принимает случайный шум или вектор из латентного пространства и генерирует синтетические изображения.
– В данном примере генератор состоит из полносвязных слоев с функцией активации LeakyReLU и слоями BatchNormalization для стабилизации обучения.
– Финальный слой генератора имеет функцию активации `tanh`, чтобы ограничить значения изображений в диапазоне [-1, 1].
4. Создание дискриминатора (`build_discriminator`):
– Дискриминатор представляет собой нейронную сеть, которая принимает изображения и классифицирует их на "реальные" (1) или "сгенерированные" (0).
– В данном примере дискриминатор также состоит из полносвязных слоев с функцией активации LeakyReLU.
– Финальный слой дискриминатора использует сигмоидную функцию активации для получения вероятности принадлежности изображения к классу "реальные".
5. Определение функций потерь и оптимизаторов:
– В данном примере используется функция потерь бинарной кросс-энтропии (`BinaryCrossentropy`).
– Оптимизаторы для генератора и дискриминатора – `Adam` с заданным коэффициентом обучения.
6. Обучение GAN (`train_gan`):
– На каждой итерации обучения:
– Генерируется случайный вектор шума из латентного пространства.
– Генератор создает синтетические изображения на основе этого шума.
– Из обучающего набора выбирается случайный батч реальных изображений.
– Собирается батч из реальных и сгенерированных изображений.
– Дискриминатор обучается на этом батче с метками "реальные" и "сгенерированные" соответственно.
– Генератор обучается на сгенерированном шуме с метками "реальные".
– Обучение происходит чередованием обучения дискриминатора и генератора, чтобы они соревновались друг с другом.
7. Обучение GAN:
– GAN собирается из генератора и дискриминатора в последовательную модель `gan`.
– Обучение GAN происходит вызовом метода `compile` с функцией потерь `binary_crossentropy` и оптимизатором `generator_optimizer`.
Обучение GAN (Generative Adversarial Network) представляет собой процесс обучения двух компонентов сети: генератора (Generator) и дискриминатора (Discriminator), взаимодействующих друг с другом в конкурентной игре.
Вначале создается последовательная модель GAN, объединяющая генератор и дискриминатор. Это делается путем последовательного объединения слоев генератора и слоев дискриминатора в единую модель. Это позволяет обращаться к генератору и дискриминатору как к единой сущности и проводить общую оптимизацию в процессе обучения.
Для обучения GAN определяется функция потерь (loss function), которая определяет, насколько хорошо работает GAN. В случае GAN, функция потерь использует обычно бинарную кросс-энтропию (binary_crossentropy), которая является распространенным выбором для бинарных классификационных задач.
Также выбирается оптимизатор (optimizer), который отвечает за обновление весов сети в процессе обучения с учетом значения функции потерь. В данном случае, указанный `generator_optimizer` используется для оптимизации параметров генератора.
Обучение GAN происходит чередованием двух основных этапов – обучение генератора и обучение дискриминатора. На каждом этапе происходит подача различных данных и обновление соответствующих параметров моделей. Главная идея заключается в том, что генератор стремится создать реалистичные данные, которые дискриминатор не сможет отличить от реальных, в то время как дискриминатор старается правильно классифицировать как реальные, так и сгенерированные данные.