Добавить в цитаты Настройки чтения

Страница 61 из 68



После поглощения нейтронов плутоний путем β-распада превращался в элемент № 95, а тот, поглотив еще нейтрон, — в элемент № 96.

Так вот этот конечный продукт был аналогичен тому, который ученые приняли за изотоп элемента № 96 с массовым числом 242. Это и означало открытие кюрия (Z=96), который получил свое имя в честь М. и П. Кюри. В выборе этого названия был и другой резон. Элемент № 96 в таблице Д. И. Менделеева рассматривался как аналог элемента гадолиния из редкоземельного семейства, истории которого положил начало Ю. Гадолин; супруги же Кюри были пионерами изучения радиоактивности, что привело к столь удивительным последствиям.

Дата рождения элемента № 95 — январь 1945 г., и он был выделен из плутония, облученного нейтронами. Название элементу дано в честь Америки (и по сходству америция с европием из семейства редких земель).

Хотя перед синтезом америция и кюрия ученые накопили уже достаточный опыт исследования, в данном случае трудности оказались гораздо существеннее. Потребовалось много времени, чтобы доказать определенно, «кто же есть кто»: 241Am и 242Cm. Оба этих изотопа не являются самыми долгоживущими. Такими оказались 243Am (T½=7950 лет) и 247Cm(1,64∙107 лет), но их удалось синтезировать только в 50-х годах. Всего же известно 11 изотопов америция и 13 изотопов кюрия. Вот еще несколько дат из истории этих элементов. В чистом виде америций был выделен в 1945 г., а в виде металла приготовлен в 1951 г. В том же году появилось сообщение о получении металлического кюрия.

Кюрием заканчивается первый взлет в истории синтеза трансуранов. Для науки открытие нептуния, плутония, америция и кюрия имело огромное значение. Впервые ученым удалось искусственно расширить таблицу Д. И. Менделеева. Выяснилось, что свойства этих элементов совсем не такие, как ожидалось раньше, и химикам пришлось серьезно задуматься, как же их наилучшим образом разместить в периодической системе.

БЕРКЛИЙ

Синтезу америция и кюрия помог плутоний-239. Его быстро научились приготовлять в больших количествах, а потому изготовление плутониевых мишений не составляет проблемы. Чтобы двигаться дальше, нужно было научиться синтезировать америций и кюрий в достаточных количествах. На это ушли годы. Но не только данное обстоятельство мешало синтезу новых трансурановых элементов. На бумаге запись ядерной реакции выглядит до удивления простой, но только специалист может понять и оценить, какие огромные трудности стоят за этим. Требовалось не только до деталей обдумать эксперимент, выяснить наиболее оптимальные условия протекания ядерных реакций. Был необходим и тщательный теоретический расчет, чтобы предсказать виды радиоактивных превращений синтезированных изотопов и вероятные продолжительности их жизни. Ведь в распоряжении ядерных физиков не было такой замечательной классификации, как периодическая система элементов у химиков. Плавный участок на кривой открытий трансурановых элементов растянулся на 5 лет. И еще одно обстоятельство должно быть упомянуто. Активность америция и кюрия настолько высока, что работать с ними в открытую смертельно опасно. Пришлось соответствующим образом оборудовать лаборатории, которые получили название горячих.

В конце 1949 г. группа Г. Сиборга сумела изготовить америциевую мишень и облучить ее α-частицами. Ядерная реакция протекала так, как предварительно рассчитали теоретики: 241Am(α, 2n)24397. Для нового элемента предложили название берклий (символ Bk) в честь города Беркли и вследствие химической аналогии элемента № 97 с редкоземельным элементом тербием (вспомните деревушку Иттербю, давшую жизнь названиям нескольких редких земель). Среди девяти известных ныне изотопов самым долгоживущим является 247Bk (период полураспада 1380 лет), синтезированный в 1956 г. Два года спустя элемент накопили в весовых количествах, а в 1971 г. ученые выделили металлический берклий. Сколь трудно осуществить накопление берклия, говорят следующие цифры: 8 г 239Pu в течение 5 лет облучались нейтронами в ядер-ном реакторе, а итогом было лишь несколько микрограммов элемента № 97. Чем дальше пробирались исследователи в трансурановую область, тем с меньшими количествами новых элементов им приходилось иметь дело.

КАЛИФОРНИЙ

После берклия элемент № 98 Г. Сиборг и его сотрудники синтезировали очень быстро. В январе–феврале 1950 г. они провели рассчитанную ядерную реакцию: 242Cm(α, n)24598, назвав новый элемент в честь штата Калифорния и Калифорнийского университета, а еще и потому, что элемент № 98 являлся аналогом редкоземельного диспрозия (труднодоступного): в прошлом веке было так же трудно добраться до Калифорнии, как выделить диспрозий из смеси редких земель. Из четырнадцати известных ныне изотопов калифорний-245 был не самым долгоживущим. Наибольший период полураспада (900 лет) имеет калифорний-251, синтезированный в 1954 г. Весовые количества этого элемента ученые выделили в 1958 г., а металлический калифорний стал реальностью в 1971 г.



ЭЙНШТЕЙНИЙ И ФЕРМИЙ

Синтезировав калифорний, американские ученые (да и их коллеги в других странах) серьезно задумались, как же двигаться дальше. Реально ли в обозримом будущем ставить задачу прорыва в еще более далекую область неизвестных трансурановых элементов?

В самом деле, не было видно реальных путей накопления достаточных для изготовления мишеней количеств берклия и калифорния, чтобы, обстреляв их α-частицами, синтезировать девяносто девятый и сотый элементы. Препятствием этому были слишком малые периоды полураспада берклия и калифорния, измерявшиеся часами и минутами (долгоживущих изотопов ученые еще не знали). Предполагался лишь один более или менее реальный путь: длительное облучение плутония интенсивным источником нейтронов, но ждать результатов пришлось бы долгие годы.

Конечно, было бы желательно получить такой мощный поток нейтронов, который сразу бы помог решить проблему. Так уран либо плутоний, захватив большое число нейтронов за короткий промежуток времени, превратились бы в очень тяжелые изотопы, например:

или

Давно было известно, что ядра избавляются от избытка нейтронов в результате превращения их в протоны, т. е. путем β-распада. Эти цепочки последовательных β-превращений могут оказаться настолько длинными, что дотянутся до образования изотопов 99-го и 100-го элементов.

Расчеты же показывали, что мощности нейтронных потоков в ядерных реакторах являются слишком слабыми, чтобы осуществить идею на практике. Кроме того, теоретики видели беду и в предполагаемых малых продолжительностях жизни изотопов элементов № 99 и № 100.

1 ноября 1952 г. американцы произвели взрыв термоядерного устройства на атолле Эниветок в Тихом океане. Несколько сотен килограммов почвы на месте взрыва (получившей кодовое название «дорогостоящая грязь») были собраны со всеми предосторожностями и отправлены в США. Группы исследователей во главе с Г. Сиборгом и А. Гиорсо произвели тщательное изучение этого радиоактивного пепла. В нем было обнаружено много различных радиоактивных изотопов трансурановых элементов, и в том числе два изотопа, которые могли быть не чем иным, как изотопами 99-го или 100-го элементов.

В ходе термоядерного взрыва мощность нейтронных потоков оказалась гораздо выше, чем предполагалось. Благодаря этому и реализовались процессы захвата нейтронов ураном, представленные выше. Изотопы 253U и 255U, испустив соответственно одну за другой 7 и 8 β-частиц, превратились в изотопы элементов девяносто девятого (25399) и сотого (255100). Их периоды полураспада оказались малыми, но вполне приемлемыми, однако, для исследований (20 дней и 22 ч).