Страница 52 из 68
Хотя химические свойства этого элемента были практически неизвестны, К. Перрье и Э. Сегре исследовали активность, чтобы собрать информацию о химии элемента 43. Этот элемент обнаружил близкое сходство с рением и показал те же самые аналитические реакции, как рений. Но он мог быть отделен от рения тем же методом, который употреблялся для разделения молибдена и рения.
Эта заметка была написана в Палермо и датирована 13 июня 1937 г. Сказать, что она произвела сенсацию, было бы, пожалуй, неправильно. Ученый мир лишь принял ее к сведению. Слишком мало сведений она содержала, а необходимы были именно подробности, четкие результаты радиохимических исследований.
Только впоследствии выяснилось, что К. Перрье и Э. Сегре совершили подвиг, ибо выделили из облученного молибдена невесомое количество нового элемента — всего 10-10 г. Никогда ранее радиохимии не доводилось оперировать с такими ничтожными количествами вещества. Для нового элемента авторы предложили название «технеций» — от греческого слова, означающего «искусственный». Так в названии первого синтезированного элемента отразился способ его открытия. Но в научный обиход это название вошло лишь 10 лет спустя.
Получив новые образцы облученного молибдена, К. Перрье и Э. Сегре продолжили свои работы. Их открытие получило подтверждение со стороны других ученых. К 1939 г. стало ясно, что при бомбардировке молибдена дейтронами или нейтронами образуются по крайней мере пять изотопов технеция. Некоторые из них были настолько долгоживущими, что позволяли провести основательные химические исследования нового элемента. «Химия сорок третьего элемента» — это словосочетание не казалось уже фантастическим. Но никак еще не удавалось точно определить периоды полураспада изотопов технеция. Были лишь предположения, разноречивые оценки. Они не утешали, ибо оттуда следовало, что наибольшие значения не превышали 90 дней. А это только накладывало запрет на надежды обнаружить элемент в земной коре.
Чем был технеций на рубеже 30-х и 40-х годов? Не более, как дорогостоящей игрушкой в руках любознательных исследователей. Перспективы накопить его в осязаемых количествах, пожалуй, отсутствовали полностью. Коренной перелом в судьбе технеция (и далеко не его одного) произошел тогда, когда было открыто удивительное явление ядерной физики — процесс деления урана под действием медленных нейтронов.
Когда медленный нейтрон попадает в ядро изотопа уран-235, он как бы разбивает его на два осколка. Каждый из них — ядро какого-либо элемента середины периодической системы. И среди этих осколков могут быть изотопы технеция. Не зря поэтому ядерный реактор (где в промышленном масштабе осуществляется процесс деления урана с целью получения ядерной энергии) называют фабрикой изотопов.
Если циклотрон позволил впервые осуществить синтез технеция, то ядерный реактор дал способ получать его в количествах, измеряемых килограммами. Но еще до того, как первый ядерный реактор начал работать, Э. Сегре в 1940 г. в лабораторных условиях обнаружил в продуктах деления урана изотоп технеция с массовым числом 99. Вторично рожденный в реакторе, технеций стал превращаться в обыденный (как ни парадоксально звучит это слово) химический элемент. В самом деле, ведь при делении 1 г урана-235 образуется 26 мг технеция-99.
Как только технеций перестал быть редкостью, прояснилось многое, что столь долго волновало ученых. И прежде всего это касалось точного определения периодов его полураспада. Уже в начале 50-х годов стало ясно, что три изотопа технеция резко выделяются по своей долгоживучести не только среди остальных его изотопов, но и среди многих существующих в природе изотопов других радиоактивных элементов. Технеций-99 имеет период полураспада в 212 000 лет, технеций-98 — полтора миллиона лет, а технеций-97 и того больше — 2 600 000 лет. Большие числа, но недостаточные для того, чтобы первичный технеций мог сохраниться на Земле со времен ее образования. Гарантия присутствия земного технеция существовала бы, если бы период полураспада достигал как минимум ста пятидесяти миллионов лет. В этом ракурсе все предыдущие поиски технеция явно представляются безнадежными.
Но ведь технеций может и поныне образовываться в результате природных ядерных реакций, например при облучении молибдена нейтронами. Откуда на Земле берутся свободные нейтроны? Они могут возникать при спонтанном делении урана. Этот процесс имеет тот же механизм, что и описанный выше, только ядра разваливаются спонтанно, самопроизвольно. И кроме двух больших осколков — ядер средних элементов в периодической системе, одновременно выбрасывается несколько нейтронов.
Поиски технеция в молибденовых рудах были тщетными, и ученые всерьез занялись изучением другой возможности. Если изотопы технеция образуются в ядерных реакторах, то почему они не могут рождаться в природных процессах спонтанного деления урана?
Если принять во внимание земные ресурсы урана (его средняя распространенность в 20-километровой толще земной коры), допустить, что процент образования технеция такой же, как и в случае искусственного деления, то, проделав соответствующие расчеты, получим: технеция на Земле всего-навсего около 1,5 кг. Столь малое количество (не то еще будет, когда речь пойдет о других синтезированных элементах!) едва ли стоит принимать всерьез. И тем не менее исследователи решили попытаться выделить земной технеций из урановых минералов. Это удалось сделать в 1961 г. американским химикам Б. Кенне и П. Куроде. Так, технеций словно обрел еще одну дату своего рождения — дату обнаружения в природе. Даже если были бы неизвестны способы искусственного синтеза технеция, все равно рано или поздно он был бы извлечен из недр земных.
Но десятью годами раньше в судьбе элемента № 43 произошло событие, которое произвело сенсацию. Американский астроном Ш. Мур в 1951 г., изучая спектр Солнца, обнаружила в нем линии, характерные для спектра технеция. Спектр технеция был изучен сразу же, как только это стало возможно, т. е. когда удалось синтезировать минимально необходимое для получения спектра количество элемента. Полученные результаты сравнили с теми данными, которые в свое время были опубликованы И. и В. Ноддак и О. Бергом для мазурия. Ничего общего в спектрах технеция и мазурия не обнаружилось, и тем самым окончательно была подтверждена ошибочность открытия мазурия. Спектр солнечного технеция целиком и полностью соответствовал спектру технеция земного. Тут прямо-таки напрашивалась аналогия с гелием: прежде чем объявиться на Земле, технеций тоже сигнализировал о своем существовании с Солнца. Правда, некоторые астрономы подвергали сомнению результаты Ш. Мур. Однако в 1952 г. космический технеций снова дал знать о себе: английский астрофизик П. Меррил нашел линии технеция в спектрах двух звезд с поэтическими названиями R Андромеды и Мира Кита. Интенсивность спектральных линий свидетельствовала о том, что на этих звездах технеция столько же, сколько и его соседей по периодической системе элементов: циркония, ниобия, молибдена, рутения, родия и палладия. Но эти элементы стабильны, тогда как технеций радиоактивен. Хотя его период полураспада довольно велик, он все же ничтожен по космическим меркам. В таком случае присутствие технеция на звездах может означать лишь одно: он и поныне образуется там в ходе различных ядерных реакций. В звездах и в настоящее время идет гигантский процесс образования химических элементов. Один астрофизик очень метко окрестил технеций пробным камнем космогонических теорий. Теперь всякая теория происхождения элементов, чтобы привести аргументы в свою пользу, должна объяснить ту последовательность ядерных реакций в звездах, которая приводит к образованию технеция.
ПРОМЕТИЙ
История одного из редкоземельных элементов оказалась совершенно необычной и потому заслуживает самостоятельного повествования, ибо прометий (таково его современное название) фактически отсутствует в природе (мы употребили слово «фактически», но не абсолютно, в этом есть свой резон). Тому времени, когда элемент № 61 был наконец открыт путем ядерного синтеза, предшествовали события, которые иначе, как удивительными, не назовешь.