Страница 2 из 4
То же самое касается и радиоволн, которые декодируют широкий диапазон звуков в ограниченный набор волн. Любой звук мог бы распространяться, как свет, если бы его колебания были равны друг другу, вроде ультразвука. Именно по принципу одинаковой массы распространяются радио-волны, которые становятся похожи на частицы, которые не возмущают энергию покоя поля, а отталкиваются на равное расстояние друг от друга, создавая свое новое поле.
Однако голоса и музыка это амплитудные возмущения поля, которые растрачивают свою энергию движения на возмущение энергии покоя темной материи. Это можно сравнить, будто тягач, который с разгону может сдвинуть с места два-три вагона, но затем все равно остановится, только в природе вагоны вернуться в прежнее состояние, а тягач в исходное.
Все что имеет одинаковую массу обязательно выстроиться в упорядоченный ряд, либо вертикальный, либо горизонтальный. Все, что имеет разную массу (колебания), обязательно застрянет как в болоте, среди других частиц, зафиксированных энергией покоя. Гудок паровоза передается на дальние расстояния не в полноте своего звучания (не во всей амплитуде), а только в тех местах, где эти колебания становятся одинаковыми на одинаковых промежутках, то есть в нескольких метрах можно услышать гудок полностью, а в нескольких километрах только его серединный чаще повторяющийся писк.
В квантовой постоянной М.Планка ключевая величина не Н, а V – частота колебаний, именно от нее зависит и величина энергии; однако не только от частоты (расстояния между частицами), но еще и от количества таких повторений, что и определяет размер самого массива поля. Поэтому первоначальный вопрос, почему вода лучше пропускает звук, чем свет некорректен.
Голоса дельфинов и китов передаются на многие километры под водой потому, что они однообразны, а крик человека под водой едва можно услышать и в метре от него, потому что в нем мало похожих и повторяющихся звуков. Иными словами, в словах дельфинов и китов не 33 буквы алфавита, а всего две или три, что и повышает частоту и дальность их колебаний. Чем больше повторяющихся одинаковых колебаний, тем дальше распространяются эти волны.
С другой стороны, звуку легче пробираться сквозь стоячие поля внешней среды, чем постоянно двигающиеся. Неправильно считать, что скорость звука в воде примерно в пять раз выше, чем в воздухе. Для точности сравнения мы должны сравнивать распространения в строго тонких горизонтальных полях, так как воздух и вода имеют разный диапазон давления и температуры.
Вода это сложение ровных горизонтальных полей в стопку, а воздух, это грубо говоря, разорванные в клочья поля. Таким образом, мы приходим к выводу, что горячие или более легкие поля замедляют распространения звука, а холодные или тяжелые поля увеличивают его. Фактически температура внешней среды является скоростью передачи первоначальной волны, когда повышение температуры повышает сопротивление, а понижение увеличивает ускорение. Таким образом, понижая температуру проводника, мы сможем ускорять передаваемые волны на более далекие расстояния, чем это происходит при естественных температурных условиях.
Звук это волна, и что бы понять его механизм распространения достаточно понаблюдать за поведением воды и ее возбудителем. К примеру, от размера камня, будет зависеть высота начальных гребней, но рано или поздно эти волны одинаково успокоятся, только на разных расстояниях от источника возбуждения.
Второй момент, волна открывает понимание поля, то есть: пик колебания внутри отдельной ячейки поля приходится не на середину между частицами, а именно на точку самой частицы. То есть волны исходят не от краев тел, а от их центров тяжести посередине. Это принципиально важное и необходимое понимание для обсуждения более сложных физических процессов, так как в учебниках нам всегда рисуют синусоиду с пиком между частицами.
Фактически один камень, брошенный в воду, это один звук, поэтому мы видим как он распространяется по поверхности медленно затухая. При этом если сначала кинуть маленький камень, а вслед за ним большой, то их волны сломают друг друга и затухнут раньше, чем если бы они распространялись по отдельности.
Так мы приходим к тому же выводу, что разные по громкости и тональности звуки замедляют друг друга, но не из-за сопротивления поля проводника, а из-за конфликтности самих возбудителей. При этом падение камня в воду говорит еще об одном явлении, а именно: распространение горизонтальной волны происходит за счет вертикальных гребней, которые поднялись из-за опускания горизонтальных. То есть это подтверждает перпендикулярную связь волны и сил электромагнетизма, открытых Д.Максвеллом.
Считается, что звук – это вертикальная волна, а свет горизонтальная волна, однако это иллюзия, иначе мы бы лучше слышали людей снизу или сверху, чем в том же горизонтальном расстоянии. Фактически распространение и света и звука зависит не столько от среды, а от природы самого распространителя. Звук это нарушение спокойного поля перпендикулярной волной, а не самой частицей. Иными словами звук это прилив на берег, но не сам ветер.
Поэтому скорость и длинна звука зависит от первоначального импульса. На длительные расстояния передаются именно одинаковые частицы (колебания) с одинаковым промежутком, фактически это создание искусственного поля частиц, которые природа с удовольствием поддержит и поможет выделением энергии.
Эксперимент Г.Герца о бомбардировании атомов электронами доказал, что и электроны внутри отдельного атома имеют определенную частоту колебаний, которые должны совпадать с поступающими извне, для распространения тока по этому единому полю. От массы и размера тела зависит его проходимость сквозь другие тела, например нам известно, что свет не проходит через твердые тела земли, но легко проникает через воду и газы.
Звук, в отличии от света, более вариабелен, поэтому более высокие колебания разбиваются о более плотные атомы, а более низкие, такие как ультразвук, могут проходить сквозь материю, в том числе и живую. Иными словами, дальность распространение зависит от равности промежутков между одинаковыми частицами, а проницаемость от их размера.
В этом смысле звук имеет более широкий спектр применения, нежели свет, хотя и свет может увеличивать свою интенсивность сокращая или увеличивая промежутки между собой, но маловероятно, что способен менять саму массу частиц, в отличии от звука.
Высота колебания звука зависит не только от массы частиц, образующих поле распространения звука, ведь понятно что удар одно массовых металлов будет громче, чем удар одно массовых камней. Поэтому мы приходим в очередному выводу, что разные массивы поля могут суммироваться, ведь плотность камня не так однообразна как кристаллическая решетка металла. Поэтому и звук от удара двух одинаковых металлов будет выше, чем от удара двух одинаковых по массе (но не по структуре) камней, а соответственно будет выделено больше энергии из двух массивов полей.
Иными словами, частота колебаний и соответственно длинна их распространения зависит от чистоты однообразных полей внутри взаимодействующих тел. Чистые элементы без примесей лучше всяких сплавов распространяют любую энергию, это уже доказано экспериментально в электротехнике, где тщательно выделяют чистые элементы для микросхем.
Таким образом, энергия звука будет зависеть 1) от силы столкновения двух чистых элементов (металлов) или полей из частиц равной массы, 2) и от массы каждого массива этих двух чистых элементов (металлов) или структуры горизонтальных и вертикальных полей, 3) от внешней среды или плотности поля проводника. Чем ниже температура, тем неподвижнее частицы внутри поля, соответственно тем лучше его проводимость. Именно поэтому холодным (еще не прогретым солнцем) утром лучше слышны отдаленные звуки.
В итоге проводимость волн и колебание зависит как от чистоты, покоя и однородности поля возмущения, так и от чистоты, покоя и однородности поля проводника. При этом массивы тел могут быть разными при их сложении; и металлы, и не металлы, и газы, и жидкости, важно лишь то, чтобы это были столкновения массивов полей с одинаковыми частицами.