Добавить в цитаты Настройки чтения

Страница 31 из 76

И Эйнштейн делится сомнениями, которых накопилось так много, что физике пора было бы избавиться от них…

«Теперь, — пишет он, — мы имеем две теории света, обе необходимые и — как приходится признать сегодня — существующие без всякой логической взаимосвязи, несмотря на двадцать лет колоссальных усилий физиков-теоретиков. Квантовая теория света… объяснила так много фактов, что она должна содержать значительную долю истины. Комптон нашел, что рентгеновский свет, рассеянный соответствующими веществами, действительно испытывает изменение частоты, требуемое квантовой (но не волновой) теорией. Положительный результат опыта Комптона показывает, что излучение ведет себя так, как если бы оно состояло из дискретных корпускул не только в смысле передачи энергии, но и в смысле передачи количества движения».

Так заканчивает свою статью Эйнштейн.

Продолжим наш рассказ о «квантовом бильярде».

Примерно в это время к незримому бильярдному столу склонился еще один гений.

В 1919 году, после демобилизации, военный радиотелеграфист Луи де Бройль возобновил в лаборатории своего брата Мориса исследования фотоэффекта рентгеновских лучей, прерванные войной. Здесь начался его путь на передний фронт науки к тесному соприкосновению с главными проблемами, смущавшими физиков того времени. Именно загадка фотоэффекта привела Эйнштейна к открытию квантов света. Бор связал кванты света со строением атома. Де Бройль дерзко пытался примирить все эти отдельные открытия между собой. Вместе с братом он стремился прояснить зависимость энергии фотоэлектронов от свойств излучения, порывавшего их связь с атомами вещества.

Это была лишь подготовка, начальный класс, из которого ученик разом вознесся к высшим достижениям науки. Он обнаружил две глубокие, поразившие его аналогии. Первая — поведение свободных электронов во многом напоминало поведение рентгеновских лучей… Вторая — общие уравнения механики, уравнения Гамильтона, имели сходство с современными уравнениями волновой оптики… Вот намеки, известные, несомненно, многим. Для того чтобы их правильно понять и истолковать, понадобился, как когда-то было с Аббе, не только талант, но и подходящий настрой мыслей. Такой настрой по воле случая получил де Бройль, изучая фотоэффект и рентгеновские лучи. Ход его мыслей: между электронами и рентгеновскими лучами, несомненно, проявляется глубокая общность. Общность частиц — электронов и волн — рентгеновских лучей. По Эйнштейну свет (а значит, и рентгеновские лучи) — поток отдельных порций энергии, во многом обладающих свойствами частиц… Может быть, правомочно и обратное положение: частицы — электроны обладают какими-то волновыми свойствами?

В 1923 году, в том же году, когда Комптон опубликовал свои замечательные исследования взаимодействия рентгеновских волн с электронами, де Бройль послал в печать серию из трех статей, открывших новую эпоху в науке. Родилась волновая механика, основа огромного здания квантовой физики. В первой статье де Бройль связал движение микрочастицы, до того представавшей перед учеными в виде маленького бильярдного шара, с распространением особой волны. Свободная частица, летящая прямолинейно и равномерно, как бильярдный шар, бегущий по столу, связана с безграничной плоской волной. Следующий шаг был много труднее. Но он объяснял загадочную устойчивость атома, в котором электроны, вращаясь вокруг ядра, выбирают для себя не произвольные, а определенные орбиты. Чем они выделены — оставалось тайной для всех, включая Бора, обосновавшего устойчивость планетарной модели атома. По де Бройлю, электроны вращаются только по тем орбитам, где укладывается целое число волн, которые электроны могут излучать при боровских перескоках с одной орбиты на другую.

Во второй статье де Бройль попытался сделать то, что Эйнштейн оставил в тылу во время пионерского прорыва к квантам света. Де Бройль набросал теорию интерференции и дифракции света, совместимую с существованием фотонов. Так он перебросил мост между волновой и квантовой сферой. В третьей статье он дал новый вывод формулы Планка и установил глубокое соответствие между движением частиц и связанных с ними волн. То, что содержалось во второй и третьей статьях, не было окончательным ответом. Лишь намеки. Только указание пути.



Здесь не место изложению бурного потока идей и результатов, порожденных этими статьями. Интересно все же отметить, что их автор лишь в следующем году удостоился докторской степени за диссертацию, основанную на развитии этих статей. В течение трех лет идеи де Бройля привлекали лишь теоретиков. В 1927 году Девиссон и Джермер в США, Тартаковский в нашей стране и Дж. П. Томсон в Англии обнаружили дифракцию электронов, прямое подтверждение волновой механики де Бройля.

Нет, наука существует не только ради науки. Аналогия между волнами и частицами дала новую жизнь микроскопам.

В науке отдельные глубокие прорывы гениальных одиночек чередуются с фронтальными продвижениями, достигаемыми усилиями многих ученых и инженеров. В 1926-27 годах немецкий физик Буш показал, что соленоид — проволочная катушка, обтекаемая электрическим током, — действует на пучок электронов, летящих вдоль ее оси, так же, как линза действует на пучок света. Его ученик Вольф использовал такую катушку и получил на экране, похожем на экран современного телевизора, изображение нагретых скрещенных проволочек. Это было изображение, сформированное не светом, а потоком электронов, испускаемых проволочками! Таков был первый шаг в создании электронного микроскопа.

Тут надо сказать следующее: дело не в том, что конструкторы микроскопов, не решаясь сделать следующий шаг, сидели сложа руки. Нет, они совершенствовали свою область по мере сил и возможностей. Но они шли эволюционным путем, вводя небольшие непринципиальные улучшения. А фундаментальные открытия физики обычно революционизируют все области науки и техники. То же произошло и в области микроскопов после прогресса в квантовой физике. Электроны, эти частицы вещества, смогли взять на себя роль света. И этим раздвинули возможности микроскопов, помогли им в их развитии обойти те принципиальные запреты, которые лежали в природе этих приборов, пока они были чисто оптическими. Частицы заменили волны, и у микроскопов появилось второе дыхание.

Постепенно выяснилось, что электронный микроскоп во многом подобен оптическому. Изображение, получаемое в нем при воздействии электронов на фотографическую эмульсию или на люминесцирующий экран, формируется в соответствии с глубокой оптико-механической аналогией, установленной еще Гамильтоном, работы которого оказали большое стимулирующее действие на де Бройля. Расчеты магнитных, а затем и электростатических линз, вплоть до задачи компенсации их аберраций, как бы повторяли путь, уже пройденный оптиками.

Существенный прогресс был достигнут в разрешающей способности. Принцип, конечно, оставался общим, как и теория Аббе, полностью применимая к электронному микроскопу. Различались длины волн. Длина дебройлевской волны электронов зависит от скорости их движения, а значит, от напряжения, разгоняющего электроны. В большинстве электронных микроскопов дебройлевская длина волны в сотни тысяч раз меньше длины света. Вдохновляющая цифра! Возникла возможность видеть еще более мелкие предметы.

Электронные микроскопы могут использовать все многообразные методы наблюдения и все приспособления, разработанные оптиками. Так, применяя метод затемненного поля зрения, можно различать детали объекта, состоящие всего из десятка атомов. Следующим естественным шагом был переход от электронов к тяжелым частицам — протонам и ионам тяжелых атомов, для которых дебройлевская длина волны еще в тысячи раз меньше.

Для того чтобы полностью избежать аберраций магнитных и электростатических линз, инженеры пошли по пути предельного упрощения прибора, совершенно отказавшись от применения линз. Так возник электронный и ионный проекторы. Это просто тончайшее острие, расположенное в центре сферы. Оно сделано из вещества, которое исследуется. Электроны и даже ионы вырываются из него очень сильным электрическим полем, приложенным между держателем острия и сферическим экраном. Заряженные частицы летят от острия к экрану по прямым путям и, ударяясь об него, образуют видимое изображение острия. При этом достигается увеличение в несколько миллионов раз — можно видеть структуру кристаллической решетки, образованной атомами, из которых состоит острие. Заметны даже отдельные крупные молекулы, помещенные на поверхность острия.