Добавить в цитаты Настройки чтения

Страница 8 из 77



Получая одновременно с Бором Нобелевскую премию в 1922 году, Астон сказал: «Мы можем быть уверены, совершенно уверены в том, что при превращении водорода в гелий определенная часть массы должна исчезнуть, Космологическое значение этого вывода огромно, и открываемые им возможности для будущего очень важны, важнее, чем любое другое научное открытие, сделанное до сих пор человечеством».

Астон, рассуждая дальше, оценил величину выделяющейся при этом энергии.

Предвосхищая будущее почти на четверть века, он подсчитал, что водород, содержащийся в 9 граммах воды, превращаясь в гелий, высвободит энергию, эквивалентную 200000 киловатт-часов.

«Перед нами источник энергии, достаточный для объяснения происхождения тепла, излучаемого Солнцем», — писал Астон. И далее: «Возможно, будущие исследователи откроют какой-нибудь способ освобождения этой энергии, который позволит ее использовать. Тогда человечество получит в свое распоряжение такие возможности, которые превосходят любую фантазию».

Физики только сейчас приобрели уверенность в том что «такие возможности» удастся реализовать с пользой для человечества. Для этого необходимо разработать метод и создать аппаратуру, обеспечивающую возможность управления термоядерной реакцией, превращающей водород в гелий. К счастью, не оправдались опасения Астона, сказавшего тогда же: «Но нужно, однако, все время помнить о том, что освобожденная энергия может оказаться совершенно неконтролируемой и благодаря своей огромной силе произвести взрыв всего окружающего вещества».

Последующие расчеты показали, а опыт подтвердил, что взрывы водородных бомб не превратили Землю в новую звезду. Но теперь их запас стал столь большим, что ядерная война неизбежно повлечет за собой гибель человечества вследствие радиоактивности, порождаемой ядерными взрывами.

Нельзя не преклониться перед интуицией, перед истинным провидением человека, предвосхитившего на столь большой срок проблему овладения энергией термоядерного синтеза. Известно, что великий Резерфорд, открывший атомное ядро, вплоть до конца тридцатых годов отвергал возможность практического применения ядерной энергии.

Сейчас известно более 275 стабильных изотопов, принадлежащих 83 природным элементам и более 2000 радиоактивных изотопов. Среди них изотопы хлор-35 и хлор-37.

После работ Астона физики в течение многих лет считали, что атомные ядра состоят из протонов и электронов. Предполагалось, что количество протонов в ядре атома данного элемента равно его атомному весу, а количество электронов в нем таково, что их отрицательный заряд компенсирует часть суммарного заряда протонов. Точнее говоря, предполагали, что в ядре ровно такое количество электронов, которое требуется для того, чтобы нескомпенсированный положительный заряд ядра оказался равным атомному номеру — номеру той клетки таблицы Менделеева, в которой расположен соответствующий элемент.

Протонно-электронную модель ядра пришлось отвергнуть из-за того, что она ошибочно предсказывала особые свойства ядер, вытекающие из их статистических характеристик.

После того как в 1932 году английский физик Дж. Чедвиг открыл новую элементарную частицу (он дал ей название «нейтрон»), не имеющую электрического заряда и обладающую массой, лишь незначительно превышающей массу протона, удалось построить новую модель ядра, удовлетворяющую требованиям статистики. Это сделали советские физики Д. Д. Иваненко и И. Е. Тамм. Они показали, что ядра атомов состоят из протонов и нейтронов. Количество протонов равно атомному номеру (номеру клетки той таблицы Менделеева, в которой расположен соответствующий элемент), а количество нейтронов таково, что сумма числа протонов и числа нейтронов, содержащихся в ядре, равна атомному весу соответствующего элемента. Таким образом, положительный заряд ядра равен количеству содержащихся в нем протонов и этот заряд (равный атомному номеру) определяет химические свойства атомов. Так был сделан еще один шаг к пониманию сущности периодического закона Менделеева.



Постоянство относительного содержания изотопов в элементах, получаемых из различных земных источников, и обнаруженные астрофизиками на небесных объектах отклонения от земной нормы играют большую роль в исследованиях Вселенной. Изотопный анализ, основанный на небольших отклонениях изотопного состава некоторых элементов от обычной нормы, позволяет ученым датировать возраст археологических находок и образцов минералов. Такие отклонения наблюдаются в образцах, в составе которых содержатся наряду со стабильными изотопами и нестабильные изотопы, подверженные радиоактивным превращениям.

Химера ли мечта алхимиков?

Во времена Менделеева люди не знали трансурановых элементов, которые должны располагаться в таблице, носящей его имя, за ураном. Но он предвидел возможность их существования.

Длительный поиск трансурановых элементов в природных рудах, специально обработанных для выделения из них урана, тория, радия и других радиоактивных элементов, не дал положительных результатов. Среди ученых возникло мнение: время жизни трансурановых элементов мало. И если они существовали когда-то, то к нашему времени в результате процессов радиоактивного распада превратились в уран, торий и в более легкие элементы. Лишь много позже, после того как трансурановые элементы были синтезированы в лабораториях и их свойства хорошо изучены, следы некоторых из них удалось обнаружить в природных минералах.

В 1934 году итальянец Энрико Ферми, много работавший с облучением различных элементов нейтронами, предложил синтезировать самый близкий из трансурановых, 93-й элемент. Он собирался осуществить это, облучая ядра атомов урана нейтронами. Такой метод был хорошо освоен при исследовании свойств атомных ядер. Удобство его обусловлено электрической нейтральностью нейтрона. У нейтрона нет заряда, и он без помех может приближаться к ядру, несмотря на его положительный заряд. Даже если нейтрон не попадает точно в ядро, но пролетает достаточно близко к нему, то мощные ядерные силы, удерживающие внутри ядра образующие его протоны и нейтроны, затягивают нейтрон внутрь ядра. Они изгибают его траекторию даже в том случае, если прицел был неточен, а первоначальная траектория нейтрона была направлена мимо ядра.

Идея Ферми основывалась на том, что уран-238 — долгоживущий изотоп урана. Каждый из его атомов в среднем через 4,5 миллиарда лет испускает альфа-частицу (ядро атома гелия) и перестает быть ураном-238. Ферми знал, что уран-238.не подвержен бета-распаду, сопровождающемуся выделением электрона, а деление ядра и редкий вид радиоактивного распада «К-захват» были в то время еще неизвестны. Метод, предложенный Ферми для синтеза элемента, имеющего заряд ядра больший, чем у ядра урана, основан на том, что при бомбардировке ядер урана нейтронами ядро урана-238, поглотив нейтрон, не изменяет своего заряда. Значит, оно превращается в ядро урана-239 и теряет свою устойчивость по отношению к бета-распаду. Выбрасывая электрон в результате бета-распада, ядро возвращается в область бета-стабильности, но при этом заряд его ядра, а значит, и его порядковый номер увеличиваете на единицу. В соответствии с периодическим законом Менделеева элемент, заряд ядра которого увеличился на единицу по сравнению с ядром урана, должен быть расположен в периодической таблице рядом с ураном, правее его. Так, писал Ферми, мог быть синтезирован первый трансурановый элемент.

Однако, следуя предложенному плану, ни Ферми, ни его последователи не достигли цели. Лишь весной 1940 года американцы Э. Мак-Миллан (Нобелевская премия по химии в 1951 году), облучая уран-238 нейтронами, наблюдал образование первого трансуранового элемента. Вновь созданный элемент занял 93-ю клетку таблицы Менделеева. Ему присвоили наименование «нептуний» Это был нептуний-239.

Так началось сенсационное продвижение в трансурановую область таблицы Менделеева.

Здесь уместно сказать, что в 1871 году Менделеев поместил уран в VI столбец, который он начал кислородом. Непосредственно над ураном Менделеев расположил вольфрам. Радикальное изменение таблицы произвел в 1902 году профессор химии в Праге Богуслав Браунер. Он провел тщательное определение атомных весов теллура и церия, ввел нулевую группу, ввел в таблицу все открытые к тому времени элементы и расположил редкоземельные элементы в одной общей для них клетке IV столбца, рядом с клеткой, занятой лантаном. При этом он расположил уран в V столбце, под висмутом. Но это был не окончательный вариант. Последующие успехи химиков привели к дальнейшей корректировке периодической системы.