Добавить в цитаты Настройки чтения

Страница 71 из 77



Мы знаем, что, продолжая расширяться, излучение остывало и его современная температура, температура реликтового излучения, в нашу эпоху стала равной 2,7 К.

Теперь пора узнать, как происходило дальнейшее расширение вещества, которое в то время состояло на 3/4 из водорода и на 1/4 из гелия с ничтожной примесью тяжелого водорода — дейтерия и легкого изотопа гелия-3 и двух изотопов: лития-6 и лития-7. Все остальное вещество и антивещество, как мы знаем, аннигилировало задолго до того, породив кванты излучения — фотоны. Осталось еще множество нейтрино, которые перестали взаимодействовать с остальным веществом на ранних этапах эволюции Вселенной. Существенно, что к тому времени пространство было очень однородно заполнено излучением и веществом.

Теперь полезно еще раз вспомнить Ньютона, который 300 лет назад понял, что вещество, равномерно распределенное в пространстве, не может вечно оставаться в этом состоянии. Если пространство конечно, писал Ньютон, то под действием тяготения все вещество собралось бы в большую сферическую массу в середине этого пространства. Если же пространство бесконечно, то должно образоваться бесконечное количество таких больших масс, разбросанных далеко друг от друга.

Мы знаем, что этот же вывод сохраняется и в Общей теории относительности. Гравитационные силы, силы тяготения, действовали с самого начала эволюции Вселенной. Но на ранних стадиях образованию комков вещества препятствовало внутреннее давление ложного вакуума. А до стадии быстрого расширения и после нее, когда Вселенная была раскаленной и непрозрачной для излучения, сжатию препятствовало давление излучения.

Только после того как при 4000 К вещество стало прозрачным для излучения, дальнейшая эволюция Вселенной начала протекать под преимущественным влиянием гравитации.

В соответствии с мнением Ньютона, малые случайные увеличения плотности вещества начали притягивать соседнее вещество, все больше увеличивая избыточную плотность.

Астрономические наблюдения позволили установить три характерные особенности структуры современной Вселенной (речь идет только о видимой части Вселенной размером 1028 см).

Первая особенность: если оценивать распределение вещества по огромным частям Вселенной размером в сотни миллионов световых лет (около 3 10), то оно оказывается в среднем однородным.

Вторая особенность: галактики, подобные той Галактике, в которой находится Солнце и мы с вами, распределены в пространстве неоднородно. Они отчетливо группируются в еще более крупные структуры — скопления галактик и сверхскопления.

Третья особенность: наряду с этими сверхскоплениями галактик во Вселенной существуют огромные области, где нет ни галактик, ни скоплений галактик.

Эти «пустые» области окружены сверхскоплениями так, что распределение вещества во Вселенной напоминает нерегулярные пчелиные соты. Стенки их образованы сверхскоплениями, там, где встречаются грани этих стенок, в ребрах «сот», плотность галактик особенно велика. Внутри «сот» нет галактик.

Теория, способная правильно описать возникновение неоднородностей в изначально однородной Вселенной, основана на фундаментальном исследовании, опубликованном советским физиком-теоретиком Е. М. Лифшицем в 1946 году. Эта работа выполнена до открытия реликтового излучения (1964 год) и до всеобщего признания теории Большого взрыва.

Теория Лифшица осталась справедливой и в наши дни. Изменились лишь величины, которые следует подставлять в его уравнения. Теперь это должны быть величины, учитывающие современный сценарий эволюции Вселенной и, в частности, роль нейтрино, которые рождались на самых начальных этапах эволюции и затем, на первых секундах эволюции Вселенной, потеряли контакт с остальной материей.

Теперь мы возвратимся к скрытой массе, которую все чаще называют темной массой.



Массу многих скоплений галактик можно определить, наблюдая, как распределены в пространстве и как движутся входящие в них галактики.

Можно поступить иначе: определить массу типичной галактики и умножить ее на количество галактик, входящих в скопление.

Естественно предположить, что при тщательных астрономических наблюдениях и правильных вычислениях оба пути приведут к одинаковому результату.

Но это не так. Первый способ — непосредственное определение массы скопления галактик из наблюдений их вращения — дает в десять — двадцать раз большее значение, чем второй, основанный на суммировании.

Это значит, что в состав скопления галактик входит масса, не поддающаяся непосредственному наблюдению.

Такое же расхождение получается при определении массы типичной галактики. Если вычислять ее по наблюдениям движения входящих в нее звезд, то результат в десять — двадцать раз превышает тот, что получается умножением массы типичной звезды на количество звезд в галактике.

Наблюдения, на основе которых выполнены эти вычисления, очень сложны и трудоемки, точность их невелика. Но наличие скрытой массы, в двадцать — тридцать раз превышающей по величине видимую массу, теперь признается большинством астрофизиков.

До 1980 года проблема скрытой массы казалась неразрешимой. Оценки показывали, что масса, порожденная энергией одного реликтового фотона, составляет 10-36 грамма. В нашу эпоху в каждом кубическом сантиметре пустого пространства содержатся около 500 таких фотонов. Значит, плотность массы реликтового излучения составляет около 5 10-34 грамма на кубический сантиметр. Это примерно в 2000 раз меньше средней плотности обычного вещества во Вселенной. До 1980 года большинство физиков считало, что нейтрино движутся со скоростью света, а следовательно, их масса покоя, как и масса покоя фотона, равна нулю. Средняя масса, связанная с движением реликтовых нейтрино, а их около 150 в каждом кубическом сантиметре, оценивалась приблизительно в 1,5 10-34 грамма в кубическом сантиметре. Таким образом, вычисления показывали, что доля фотонов и нейтрино в образовании скрытой массы пренебрежимо мала.

Однако Зельдович и некоторые другие физики давно указывали на некоторый произвол гипотезы о том, что нейтрино не имеет массы покоя. Эта гипотеза была предложена «изобретателем» нейтрино Паули как самая простая. (Паули сделал вывод о существовании нейтрино для того, чтобы ликвидировать кажущееся нарушение законов сохранения энергии и движения (импульса) в процессе радиоактивного бета-распада.) Зельдович писал, что гипотеза об отсутствии массы покоя у нейтрино не следует из фундаментальных законов природы. Что при помощи нейтрино, имеющего небольшую массу покоя, можно с успехом свести концы с концами в балансе энергии и импульса при бета-распаде.

Постепенно все больше ученых начало склоняться к тому, что нейтрино обладают небольшой массой покоя. Экспериментаторы начали ставить сложные опыты, с тем чтобы проверить, какая из возможностей реализуется в природе. Первые сообщения об открытии и измерении массы покоя нейтрино, рождающихся при бета-распаде, подвергались придирчивой критике противников существования этой массы и оказывались неубедительными.

Наконец весной 1980 года группа сотрудников Института теоретической и экспериментальной физики АН СССР, руководимая В. Любимовым и Е. Третьяковым, опубликовала результаты многолетних наблюдений. Они с большой достоверностью свидетельствуют о том, что нейтрино, рождающиеся вместе с электронами или позитронами, действительно имеют массу покоя. Их масса оценена приблизительно в 6– 10-32 грамма — примерно в 200 раз больше, чем средняя плотность массы, обусловленной движением всех нейтрино, пролетающих ежесекундно через объем, равный одному кубическому сантиметру, если по-прежнему считать, что нейтрино лишены массы покоя. Величина массы покоя нейтрино еще подлежит уточнению. Опыты очень сложны. Но сам факт, по-видимому, установлен надежно.

Физики знают, что, кроме электронных нейтрино, существует еще два сорта нейтрино. Уже появились сообщения об измерениях, показавших, что и их массы покоя отличны от нуля.