Страница 66 из 77
Существенной трудностью стандартного сценария является проблема средней плотности материи во Вселенной. С ней мы уже встречались при обсуждении первоначальной теории Фридмана. Современные оценки на основе наблюдений астрономов показывают, что отклонение средней плотности материи от критического значения, принятого за единицу, лежит в пределах от 0,1 до 2. Но вычисления, проведенные на основе стандартного сценария, показывают: для того чтобы в процессе расширения средняя плотность материи попала внутрь этих границ, она должна через секунду после начала расширения равняться единице с погрешностью менее чем 10-15. Это, конечно, менее жесткое требование, чем погрешность 10-65, с которой мы встречались в более раннем периоде расширения. Но стандартный сценарий не способен объяснить причину, приведшую к тому, что средняя плотность материи, вплоть до первой секунды расширения, была равна своему критическому значению с такой большой точностью.
Не может считаться окончательно решенным вопрос о современном преобладании вещества над антивеществом. Стандартный сценарий объясняет его ссылкой на малую флуктуацию. На случайное отклонение от равенства числа ядерных частиц — барионов и числа антибарионов в начале аннигиляции. Такого отклонения, что на миллиард антибарионов приходилось ровно миллиард и еще один лишний барион. Общее количество барионов и антибарионов в то время было столь велико, что этого ничтожного преимущества достаточно, чтобы после аннигиляции всех пар барионов и антибарионов осталось ровно столько «избыточных» барионов, сколько их существует в современной Вселенной. А общее число барионов в видимой части Вселенной сейчас по оценкам составляет 1078. Перенос этой проблемы на более раннюю стадию эволюции, когда барионы и антибарионы рождались из кварков и антикварков, не решает вопроса из-за трудности проведения точных вычислений процессов рождения и аннигиляции тяжелых барионов.
К этим проблемам в конце семидесятых годов прибавились новые, возникшие при подобном анализе конкретного применения теории Великого объединения к проблеме эволюции Вселенной. Несмотря на то что теория Великого объединения до сих пор не может считаться окончательно завершенной, она уже позволяет проводить анализ процессов микромира и получать много результатов, подтверждаемых точными опытами. Вместе с тем именно теория эволюции Вселенной оказалась лабораторией, способной отвергать различные варианты Великого объединения и поддерживать другие, несмотря на то что основная область применения теории Великого объединения не космос, а микромир.
Еще одна трудность возникает при попытках связать между собой проблему горизонта с тем переломным моментом в развитии Вселенной, который происходил при температуре порядка 1028 К и привел к разрушению симметрии Великого объединения.
Наша современная Вселенная, точнее, ее видимая часть, ограниченная горизонтом, имеет размеры 1028 см.
Наблюдения показывают, что во всем этом огромном пространстве справедливы одни и те же физические законы. Самые удаленные однотипные объекты, доступные крупнейшим телескопам и радиотелескопам, не различаются между собой. Невозможно отказаться от мысли о том, что они прошли общий путь развития, начиная с самых ранних этапов эволюции Вселенной. Но такая общность возможна, только если вся Вселенная первоначально находилась внутри единой области, ограниченной горизонтом событий.
Первый отсчет времени, соответствующий нарушению суперобъединения, соответствует, как мы знаем, 10-35 с после начала Большого взрыва. В этот момент горизонт событий ограничивал область размером около 10— 25 см, то есть в 1012 раз меньшей диаметра атомного ядра.
В исходной Вселенной должно было быть много таких затравочных областей. Выше уже говорилось, что они не могут быть причинно связанными между собой и поэтому развивались совершенно независимо.
Во время первого переломного момента, завершающего существование Великого объединения, несвязанные области — домены — должны были оказаться разделенными между собой границами, на которых возникает большая избыточная плотность материи. Более того, во всех вариантах теории Великого объединения, как установили в 1974 году Хоофт и Поляков, во время этого перехода при температуре 1028 К должно было рождаться большое количество магнитных монополей.
Расчеты показали: и стенки доменов, и монополи чрезвычайно устойчивы. Количество их, возникшее на рубеже распада Великого объединения, столь велико, что их совокупная масса значительно превосходит остальную массу Вселенной, — это должно было ускорить ее эволюцию. Ускорить настолько, что охлаждение реликтового излучения до 3 К должно было бы совершиться не за 1010 лет, а всего за 3 104 лет после начала расширения. Все предсказания теории Большого взрыва, подтвержденные опытом, показывают, что возникновение жизни за такой промежуток времени невозможно. Против стандартного сценария эволюции Вселенной свидетельствует и то, что ни одна из многочисленных попыток обнаружить существование монополей, не привела к успеху.
Все эти трудности и еще несколько менее существенных явно указывают, что применение теории Великого объединения к уточнению теории Большого взрыва нуждается в тщательном анализе.
Первые попытки
Первую, четко направленную попытку преодоления трудностей стандартного сценария сделал в 1979 году молодой советский ученый А. А. Старобинский. Его целью было понять: как избежать заложенного в решении Фридмана сакраментального момента начального расширения Вселенной из нулевого объема? Он исходил из того, что структура пространства Вселенной, расширяющейся в соответствии с решением Фридмана, даже при очень большой плотности энергии вполне удовлетворяет уравнениям Эйнштейна.
Но для описания самого первого этапа расширения необходимо учесть некоторые простейшие квантовые поправки к этим уравнениям.
Ведь сам Эйнштейн считал, что ряд обстоятельств требует объединения теории относительности с квантовой теорией. Без этого невозможно, например, понять факт устойчивости атомов. Устойчивость атомов, их длительное существование, заставили Бора признать, что теория Максвелла теряет силу в атомных масштабах. Иначе электроны, входящие в атом, должны излучать электромагнитные волны и, теряя таким образом энергию, упасть на ядро атома. Эйнштейн указывал на то, что электроны, входящие в атом, в соответствии с теорией относительности должны излучать гравитационные волны. А это тоже связано с потерей энергии и гибелью атома. Но атомы не гибнут. Значит, какие-то квантовые запреты препятствуют электронам, находящимся в атомах, излучать гравитационные волны.
Создание квантовой теории гравитации оказалось чрезвычайно трудной задачей. Она не решена до сих пор. Однако первые приближения к ее решению уже реализованы.
Старобинский начал свою статью так: «В настоящее время теория квантовых эффектов в сильных гравитационных полях является уже достаточно развитой, чтобы можно было серьезно поставить вопрос о том, каково было состояние Вселенной до начала ее классического расширения по фридмановскому закону… иными словами — что было до «Большого взрыва»».
Здесь необходимо сделать пояснение: слова до Большого взрыва нужно понимать не буквально, не в смысле «до начала расширения». Старобинский хотел придвинуться к «началу» ближе того рубежа, на котором остановились его предшественники, создавшие стандартные сценарии Большого взрыва.
Вспомним, что непреодолимой и преградой их продвижению была именно необходимость учета квантовых поправок к теории Эйнштейна — Фридмана.
Новым в подходе Старобинскокого была и вторая цель. Он стремился выяснить: сохранились ли до наших дней следы процессов, протекавших на самых ранних этапах эволюции Вселенной? Он хотел получать из своей новой теории выводы, доступные проверке. Мы видели, что до его работы теория Большого взрыва привела лишь к двум результатам, пригодным для проверки: относительное содержание гелия и водорода, а та также температура реликтового излучения. Старобинский уже в 1976 году сделал первую попытку расширить сценарии Большого взрыва, продвинуться ближе к начальным кадрам, изображающим неведомые ранние этапы эволюции Вселенной. Но вычисленная им тогда величина (амплитуда оставшихся с того времени гравитационных в волн) была много ниже чувствительности аппаратуры, имевшейся у физиков.